Mechanical properties of dual-phase polymer electrolytes prepared from poly(styrene-co-butadiene) rubber/poly(acrylonitrile-co-butadiene) rubber mixed latices

1995 ◽  
Vol 33 (15) ◽  
pp. 2137-2142 ◽  
Author(s):  
Toshihiro Ichino ◽  
Yukitoshi Takeshita ◽  
Shiro Nishi
2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2018 ◽  
Vol 940 ◽  
pp. 23-27
Author(s):  
Pattarakamon Chaiwan ◽  
Jantrawan Pumchusak

The effects of the carbon fiber (CF), carbon black (CB) and nanosilica (SiO2) on the mechanical properties of the phenolic resin (PF) were studied and the optimum composition was selected for the preparation of quaternary composites (CF/CB/SiO2 phenolic composites). The incorporation of poly (acrylonitrile-co-butadiene) rubber (NBR) to strengthen the quaternary composites were also studied. The morphological, mechanical and thermo-mechanical properties of unmodified and NBR modified-quaternary phenolic composites were investigated. The phenolic compounds were mixed by ball milling and the phenolic composites were fabricated by hot compression molding. Scanning electron microscopy images of NBR modified-quaternary phenolic composites show the high fracture surface roughness. The results show that the addition of 5 wt% NBR in the quaternary composites offer the highest tensile strength and Young’s modulus which are significantly improved by 176% and 235%, respectively, and they also offer the high flexural strength, impact strength and flexural modulus which are improved by 79%, 29% and 12%, respectively, compared to neat PF. The glass transition temperature (Tg) of unmodified and NBR modified-quaternary phenolic composites are higher than that of neat PF (107.3 °C). The increase of NBR content does not deteriorate Tg of the quaternary phenolic composites. This study provides a new pathway for making advanced phenolic composites.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2019 ◽  
pp. 135-142
Author(s):  
N. V. Shadrinov ◽  
U. V. Evseeva

The results of study of the influence of hollow corundum microspheres HCM-S (5–100 µm) and HCM-L (70–180 µm) on the properties of nitrile butadiene rubber BNKS-18 are presented. The dependence of elastomer resistance to abrasion impact and physic and mechanical properties on the dispersion and concentration of hollow corundum microspheres is shown. The process of hollow corundum microspheres exfoliation of the elastomeric matrix, which largely determines the change of physic and mechanical properties, has been studied by specially developed stretching device compatible with an atomic force microscope. The paper describes microspheres exfoliation which is conventionally divided into 3 stages.


2013 ◽  
Vol 33 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Shohreh Tolooei ◽  
Ghasem Naderi ◽  
Shirin Shokoohi ◽  
Sedigheh Soltani

Abstract Ternary elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR) and two types of nanoclay (Cloisite 15A and Cloisite 30B) were prepared using a laboratory scale two-roll mill. The effects of nanoclay composition on the cure characteristics, mechanical properties and morphology of NBR/BR (50/50) nanocomposite samples containing 3, 5, 7 and 10 wt% nanoclay were investigated. According to the cure characteristics both types of nanoclay caused a reduction in the scorch time and optimum cure time of the nanocomposite compound. X-ray diffraction patterns of all samples suggested the intercalation of polymer chains into the silicate layers. This was confirmed by transmission electron microscopy (TEM) micrographs. Dynamic mechanical thermal analysis (DMTA) was utilized to study the dispersion state of nanoclay within the elastomer blend matrix. The results showed the development of mechanical properties with the establishment of interactions between nanoclay and polymer chains. Antiknock and brake fluid uptake were also reduced with increasing the nanoclay content.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document