Quantitative analysis of near surfaces three-dimensional orientation of polymer chains in PET and PEN films using polarized ATR FTIR spectroscopy

2010 ◽  
Vol 48 (8) ◽  
pp. 870-879 ◽  
Author(s):  
Miho Momose ◽  
Shinji Ando
Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


1998 ◽  
Vol 25 (4) ◽  
pp. 621-630 ◽  
Author(s):  
Yasser Hassan ◽  
Said M Easa

Coordination of highway horizontal and vertical alignments is based on subjective guidelines in current standards. This paper presents a quantitative analysis of coordinating horizontal and sag vertical curves that are designed using two-dimensional standards. The locations where a horizontal curve should not be positioned relative to a sag vertical curve (called red zones) are identified. In the red zone, the available sight distance (computed using three-dimensional models) is less than the required sight distance. Two types of red zones, based on stopping sight distance (SSD) and preview sight distance (PVSD), are examined. The SSD red zone corresponds to the locations where an overlap between a horizontal curve and a sag vertical curve should be avoided because the three-dimensional sight distance will be less than the required SSD. The PVSD red zone corresponds to the locations where a horizontal curve should not start because drivers will not be able to perceive it and safely react to it. The SSD red zones exist for practical highway alignment parameters, and therefore designers should check the alignments for potential SSD red zones. The range of SSD red zones was found to depend on the different alignment parameters, especially the superelevation rate. On the other hand, the results showed that the PVSD red zones exist only for large values of the required PVSD, and therefore this type of red zones is not critical. This paper should be of particular interest to the highway designers and professionals concerned with highway safety.Key words: sight distance, red zone, combined alignment.


2011 ◽  
Vol 236 (11) ◽  
pp. 1342-1350 ◽  
Author(s):  
Yukio Hirabayashi ◽  
Yoshihiro Hatta ◽  
Jin Takeuchi ◽  
Isao Tsuboi ◽  
Tomonori Harada ◽  
...  

Hematopoiesis occurs in the bone marrow, where primitive hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment composed of stromal cells. We examined the hematopoietic supportive ability of stromal cells in a 3D culture system using polymer particles with grafted epoxy polymer chains. Umbilical cord blood-derived CD34+ cells were co-cultivated with MS-5 stromal cells. They formed a 3D structure in the culture dish in the presence of particles, and the total numbers of cells and the numbers of hematopoietic progenitor cells, including colony-forming unit (CFU)-Mix, CFU-granulocyte-macrophage, CFU-megakaryocyte and burst-forming unit-erythroid, were measured every seven days. The hematopoietic supportive activity of the 3D culture containing polymer particles and stromal cells was superior to that of 2D culture, and allowed the expansion and maintenance of hematopoietic progenitor cells for more than 12 weeks. Various types of hematopoietic cells, including granulocytes, macrophages and megakaryocytes at different maturation stages, appeared in the 3D culture, suggesting that the CD34+ cells were able to differentiate into a range of blood cell types. Morphological examination showed that MS-5 stromal cells grew on the surface of the particles and bridged the gaps between them to form a 3D structure. Hematopoietic cells slipped into the 3D layer and proliferated within it, relying on the presence of the MS-5 cells. These results suggest that this 3D culture system using polymer particles reproduced the hematopoietic phenomenon in vitro, and might thus provide a new tool for investigating hematopoietic stem cell–stromal cell interactions.


2013 ◽  
Vol 76 (9) ◽  
pp. 504-509 ◽  
Author(s):  
Ju-Chun Hsu ◽  
Yi-Cheng Wu ◽  
Peng-Hui Wang ◽  
Hsing-I Wang ◽  
Chi-Mou Juang ◽  
...  

Placenta ◽  
2017 ◽  
Vol 57 ◽  
pp. 239-240 ◽  
Author(s):  
Andrew Melbourne ◽  
Rosalind Pratt ◽  
Ciaran Hutchinson ◽  
Owen Arthurs ◽  
Neil J. Sebire ◽  
...  

1986 ◽  
Vol 59 (4) ◽  
pp. 541-550 ◽  
Author(s):  
Kyung-Do Suh ◽  
Hidetoshi Oikawa ◽  
Kenkichi Murakami

Abstract From the experimental results of the present investigation, it is apparent that two kinds of networks which have a different three-dimensional network structure give quite different behavior of chemical stress relaxation, even if both networks have the same network chain density. The difference in three-dimensional network structure for the two kinds of rubber arises from the degree of entanglement, which changes with the concentration of the polymer chains prior to the crosslinking process. The direct cause of chemical relaxation is due to the scission of network chains by degradation, whereas the total relaxation is caused by the change of geometrical conformation of network chains. This then casts doubt on the basic concept of chemorheology which is represented by Equation 2.


1994 ◽  
Vol 27 (3) ◽  
pp. 193-208 ◽  
Author(s):  
Michael Amling ◽  
Hans J. Grote ◽  
Martin Pösl ◽  
Michael Hahn ◽  
Günter Delling

Sign in / Sign up

Export Citation Format

Share Document