Electronic properties of zinc-blende Scx Ga1−xN

2006 ◽  
Vol 243 (12) ◽  
pp. 2780-2787 ◽  
Author(s):  
A. Ben Fredj ◽  
Y. Oussaifi ◽  
N. Bouarissa ◽  
M. Said
2003 ◽  
Vol 47 (8) ◽  
pp. 1335-1338 ◽  
Author(s):  
F. Benmakhlouf ◽  
A. Bechiri ◽  
N. Bouarissa

2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2016 ◽  
Vol 94 (3) ◽  
pp. 254-261
Author(s):  
Kh. Kabita ◽  
M. Jameson ◽  
B.I. Sharma ◽  
R.K. Brojen ◽  
R.K. Thapa

An ab initio calculation of the structural, elastic, and electronic properties of indium arsenide (InAs) under induced pressure is investigated using density functional theory with modified Becke–Johnson potential within the generalised gradient approximation of the Perdew–Burke–Ernzerhof scheme. The lattice parameters are found to be in good agreement with experimental and other theoretical data. The pressure-induced structural phase transition of InAs zinc blende to rock salt structure is found to occur at 4.7 GPa pressure with a 17.2% of volume collapse. The elastic properties of both the zinc blende and rock salt structures at different pressures are studied. The electronic band structures at different pressures for both the structures are investigated using the total and partial density of states. The energy band gap of the InAs zinc blende phase is increased with increasing pressure while in rock salt the phase the conduction band crosses towards the valence band and thus shows metallic behaviour.


2002 ◽  
Vol 743 ◽  
Author(s):  
S. Q. Wang ◽  
H. Q. Ye

ABSTRACTThe result of first-principles density functional calculations of the bulk modulus and related structural and electronic properties of the total 25 group III-V binary phases with zinc-blende and wurtzite structures are presented. The behavior of energy band structure variation under high pressures is also studied. It is found that the bulk modulus is more sensitive to the local atom configuration than the lattice structure. The crystallographic geometry plays an important role in the electronic property of these phases.


2016 ◽  
Vol 380 (34) ◽  
pp. 2678-2684 ◽  
Author(s):  
Yong Zhang ◽  
Zhong-Xiang Xie ◽  
Xia Yu ◽  
Hai-Bin Wang ◽  
Yuan-Xiang Deng ◽  
...  

2017 ◽  
Vol 31 (02) ◽  
pp. 1650255
Author(s):  
Sahar Javaheri ◽  
Arash Boochani ◽  
Manuchehr Babaeipour ◽  
Sirvan Naderi

Structural, elastic, optical, and electronic properties of wurtzite (WZ), zinc-blende (ZB), and rocksalt (RS) structures of AlN are investigated using the first-principles method and within the framework of density functional theory (DFT). Lattice parameters, bulk modulus, shear modulus, Young’s modulus, and elastic constants are calculated at zero pressure and compared with other experimental and theoretical results. The wurtzite and zinc-blende structures have a transition to rocksalt phase at the pressures of 12.7 GPa and 14 GPa, respectively. The electronic properties are calculated using both GGA and EV-GGA approximations; the obtained results by EV-GGA approximation are in much better agreement with the available experimental data. The RS phase has the largest bandgap with an amount of 4.98 eV; by increasing pressure, this amount is also increased. The optical properties like dielectric function, energy loss function, refractive index, and extinction coefficient are calculated under pressure using GGA approximation. Inter-band transitions are investigated using the peaks of imaginary part of the dielectric function and these transitions mainly occur from N-2[Formula: see text] to Al-3[Formula: see text] levels. The results show that the RS structure has more different properties than the WZ and ZB structures.


2012 ◽  
Vol 26 (24) ◽  
pp. 1250159 ◽  
Author(s):  
LAKHDAR DJOUDI ◽  
ABDELHADI LACHEBI ◽  
BOUALEM MERABET ◽  
HAMZA ABID

The full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory, using the generalized gradient approximation, is used to study the structural and electronic properties of zinc-blende B y Al x Ga 1-x-y N quaternary alloys that match the lattice of an AlN substrate. The range of compositions, for which the lattice of the alloy matches AlN , is determined. Our calculated band structure, density of states, electron density and lattice parameter for B y Al x Ga 1-x-y N allow to accurately evaluate the profound effect that the incorporation of small amounts of Boron have on structural and electronic properties of Al x Ga 1-x N alloys. A comparison of the ground state properties with the available experimental and theoretical data is made for the compounds related to B y Al x Ga 1-x-y N and of the Al x Ga 1-x N alloys. The results show a strong dependence of the band gap (as well as the lattice parameter) on the Boron content, which might make B y Al x Ga 1-x-y N materials promising and useful for optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document