High-Quality SOI by Oxygen Implantation into Silicon

1987 ◽  
Vol 93 ◽  
Author(s):  
A. H. van Ommen ◽  
H. J. Ligthart ◽  
J. Politiek ◽  
M. P. A. Viegers

ABSTRACTHigh quality Silicon-On-Insulator, with a dislocation density lower than 105cm−2, has been formed by high temperature annealing of high-dose oxygen implanted silicon. In the as-implanted state, oxygen was found to form precipitates in the top silicon film. In the upper region these precipitates were found to order into a superlattice of simple cubic symmetry. Near the interface with the buried oxide film the precipitates are larger and no ordering occurs in that region. Contrary to implants without precipitate ordering where dislocations are observed across the entire layer thickness of the top silicon film, dislocations are now only found near the buried oxide. The precipitate ordering appears to prevent the dislocations to climb to the surface. High temperature annealing results in precipitate growth in this region whereas they dissolve elsewhere. These growing precipitates pin the dislocations and elimination of precipitates and dislocations occurs simultaneously, resulting in good quality SOI material.

1987 ◽  
Vol 107 ◽  
Author(s):  
A.H. Van Ommen

AbstractRecent results on silicon on insulator structures formed by implantation of oxygen and subsequent high temperature annealing will be discussed. The resulting silicon on insulator structure has sharp interfaces and a dislocation density of less than 105 cm -2 in the top silicon film. This density of defects is several orders of magnitude lower than previously reported values. The relation between the microstructure after implantation and this relatively low defect density will be discussed. Silicon point defects will be shown to play an important role in the establishment of the microstructure during implantation. Relations between implantation conditions, point defect concentrations and microstructure will be discussed to come to the formulation of the boundary conditions for the formation of high quality silicon on insulator material by this method.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


Author(s):  
S. J. Krause ◽  
C. O. Jung ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structure by high dose oxygen implantation (SIMOX) has excellent potential for use in radiation hardened and high speed integrated circuits. Device fabrication in SIMOX requires a high quality superficial Si layer above the buried oxide layer. Previously we reported on the effect of heater temperature, background doping, and annealing cycle on precipitate size, density, and location in the superficial Si layer. Precipitates were not eliminated with our processing conditions, but various authors have recently reported that high temperature annealing of SIMOX, from 1250°C to 1405°C, eliminates virtually all precipitates in the superficial Si layer. However, in those studies there were significant differences in implantation energy and dose and also annealing time and temperature. Here we are reporting on the effect of annealing time and temperature on the formation and changes in precipitates.


MRS Bulletin ◽  
1998 ◽  
Vol 23 (12) ◽  
pp. 25-29 ◽  
Author(s):  
Steve Krause ◽  
Maria Anc ◽  
Peter Roitman

Oxygen-implanted silicon-on-insulator (SOI) material, or SIMOX (separation by implantation of oxygen), is another chapter in the continuing development of new material technologies for use by the semiconductor industry. Building integrated circuits (ICs) in a thin layer of crystalline silicon on a layer of silicon oxide on a silicon substrate has benefits for radiationhard, high-temperature, high-speed, low-voltage, and low-power operation, and for future device designs. Historically the first interest in SIMOX was for radiation-hard electronics for space, but the major application of interest currently is low-power, high-speed, portable electronics. Silicon-on-insulator also avoids the disadvantage of a completely different substrate such as sapphire or gallium arsenide. Formation of a buried-oxide (BOX) layer by high-energy, high-dose, oxygen ion implantation has the advantage that the ion-implant dose can be made extremely precise and extremely uniform. However the silicon and oxide layers are highly damaged after the implant, so high-temperature annealing sequences are required to restore devicequality material. In fact SIMOX process development necessitated the development of new technologies for high-dose implantation and high-temperature annealing.


1985 ◽  
Vol 53 ◽  
Author(s):  
S.J. Krause ◽  
C.O. Jung ◽  
S.R. Wilson ◽  
R.P. Lorigan ◽  
M.E. Burnham

ABSTRACTOxygen has been implanted into Si wafers at high doses and elevated temperatures to form a buried SiO2 layer for use in silicon-on-insulator (SOI) structures. Substrate heater temperatures have been varied (300, 400, 450 and 500°C) to determine the effect on the structure of the superficial Si layer through a processing cycle of implantation, annealing, and epitaxial growth. Transmission electron microscopy was used to characterize the structure of the superficial layer. The structure of the samples was examined after implantation, after annealing at 1150°C for 3 hours, and after growth of the epitaxial Si layer. There was a marked effect on the structure of the superficial Si layer due to varying substrate heater temperature during implantation. The single crystal structure of the superficial Si layer was preserved at all implantation temperatures from 300 to 500°C. At the highest heater temperature the superficial Si layer contained larger precipitates and fewer defects than did wafers implanted at lower temperatures. Annealing of the as-implanted wafers significantly reduced structural differences. All wafers had a region of large, amorphous 10 to 50 nm precipitates in the lower two-thirds of the superficial Si layer while in the upper third of the layer there were a few threading dislocations. In wafers implanted at lower temperatures the buried oxide grew at the top surface only. During epitaxial Si growth the buried oxide layer thinned and the precipitate region above and below the oxide layer thickened for all wafers. There were no significant structural differences of the epitaxial Si layer for wafers with different implantation temperatures. The epitaxial layer was high quality single crystal Si and contained a few threading dislocations. Overall, structural differences in the epitaxial Si layer due to differences in implantation temperature were minimal.


2021 ◽  
Vol 42 (12) ◽  
pp. 122804
Author(s):  
Shangfeng Liu ◽  
Ye Yuan ◽  
Shanshan Sheng ◽  
Tao Wang ◽  
Jin Zhang ◽  
...  

Abstract In this work, based on physical vapor deposition and high-temperature annealing (HTA), the 4-inch crack-free high-quality AlN template is initialized. Benefiting from the crystal recrystallization during the HTA process, the FWHMs of X-ray rocking curves for (002) and (102) planes are encouragingly decreased to 62 and 282 arcsec, respectively. On such an AlN template, an ultra-thin AlN with a thickness of ~700 nm grown by MOCVD shows good quality, thus avoiding the epitaxial lateral overgrowth (ELOG) process in which 3–4 μm AlN is essential to obtain the flat surface and high crystalline quality. The 4-inch scaled wafer provides an avenue to match UVC-LED with the fabrication process of traditional GaN-based blue LED, therefore significantly improving yields and decreasing cost.


RSC Advances ◽  
2014 ◽  
Vol 4 (66) ◽  
pp. 35106-35111 ◽  
Author(s):  
Yuanbin Dai ◽  
Yongzhong Wu ◽  
Lei Zhang ◽  
Yongliang Shao ◽  
Yuan Tian ◽  
...  

This manuscript describes a high temperature annealing process to prepare a porous substrate. The substrate was used for the growth of GaN by using HVPE method to provide reduced residual stress and low defect density.


1987 ◽  
Vol 51 (10) ◽  
pp. 773-775 ◽  
Author(s):  
W. M. Duncan ◽  
P.‐H. Chang ◽  
B.‐Y. Mao ◽  
C.‐E. Chen

Sign in / Sign up

Export Citation Format

Share Document