Effect of growth temperature and Si doping on the microstructure of GaN thin films grown on high temperature GaN

2003 ◽  
Vol 0 (7) ◽  
pp. 2095-2098 ◽  
Author(s):  
Kwang Suk Son ◽  
Dongyu Kim ◽  
Hyung Koun Cho ◽  
Kyuhan Lee ◽  
Sunwoon Kim ◽  
...  
2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4439
Author(s):  
Shui-Yang Lien ◽  
Yu-Hao Chen ◽  
Wen-Ray Chen ◽  
Chuan-Hsi Liu ◽  
Chien-Jung Huang

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


2021 ◽  
Vol 415 ◽  
pp. 127097
Author(s):  
P.C. Silva Neto ◽  
D.A. Ramirez ◽  
A.R. Terto ◽  
J.Y.E. Santos ◽  
J.C.V. Dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document