Apple polyphenol extract alleviates lipid accumulation in free‐fatty‐acid‐exposed HepG2 cells via activating autophagy mediated by SIRT1 / AMPK signaling

2020 ◽  
Author(s):  
Deming Li ◽  
Yuan Cui ◽  
Xinjing Wang ◽  
Fang Liu ◽  
Xinli Li
2014 ◽  
Vol 5 (6) ◽  
pp. 1134-1141 ◽  
Author(s):  
Tianshun Zhang ◽  
Norio Yamamoto ◽  
Hitoshi Ashida

Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease.


2014 ◽  
Vol 53 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Horng-Yih Ou ◽  
Hung-Tsung Wu ◽  
Feng-Hwa Lu ◽  
Yu-Chu Su ◽  
Hao-Chang Hung ◽  
...  

Hepatic steatosis is highly correlated with insulin resistance and diabetes. Although, it has been demonstrated that activation of free fatty acid receptor 1 (FFAR1) by agonists showed benefits for the improvement of diabetes, the effects of FFAR1 agonists on hepatic steatosis were unknown. In this study, a high fat diet (HFD)-induced hepatic steatosis animal model was utilized to evaluate the effects of an FFAR1 agonist, GW9508, on hepatic lipid accumulation, and HepG2 hepatoma cells were also used to clarify the possible mechanisms. Administration of GW9508 significantly decreased the hepatic lipid accumulation with decreased expressions of lipogenesis-related proteins in HFD mice. Knockdown of hepaticFfar1by lentiviral vectors containing short hairpin RNA targeted toFfar1diminished the effect of GW9508 in HFD mice. In addition, GW9508 decreased oleic acid-induced lipid accumulation in HepG2 cells by decreases in the expression of lipogenesis-related proteins. Moreover, GW9508 downregulated the expression of sterol regulatory element-binding protein 1 (SREBP1) through a p38-dependent pathway, whereas knockdown ofFfar1in HepG2 cells diminished the effect of GW9508 on the decrease in SREBP1. Considering all these results together, GW9508 exerts a therapeutic effect to improve hepatic steatosis through a p38-dependent pathway. Thus, investigation of chemicals that act on FFAR1 might be a new strategy for the treatment of hepatic steatosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 903
Author(s):  
Jen-Ying Hsu ◽  
Hui-Hsuan Lin ◽  
Charng-Cherng Chyau ◽  
Zhi-Hong Wang ◽  
Jing-Hsien Chen

Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.


2022 ◽  
Vol 71 (1) ◽  
pp. 95-104
Author(s):  
Runzhou Sun ◽  
Ruixin Xiao ◽  
Pengfei Lv ◽  
Feifei Guo ◽  
Yanling Gong ◽  
...  

2018 ◽  
Vol 66 (37) ◽  
pp. 9667-9678 ◽  
Author(s):  
Rui Guo ◽  
Beita Zhao ◽  
Yijie Wang ◽  
Dandan Wu ◽  
Yutang Wang ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chian-Jiun Liou ◽  
Shu-Ju Wu ◽  
Szu-Chuan Shen ◽  
Li-Chen Chen ◽  
Ya-Ling Chen ◽  
...  

Abstract Background Phloretin is isolated from apple trees and could increase lipolysis in 3T3-L1 adipocytes. Previous studies have found that phloretin could prevent obesity in mice. In this study, we investigated whether phloretin ameliorates non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice, and evaluated the regulation of lipid metabolism in hepatocytes. Methods HepG2 cells were treated with 0.5 mM oleic acid to induce lipid accumulation, and then treated with phloretin to evaluate the molecular mechanism of lipogenesis. In another experiment, male C57BL/6 mice were fed normal diet or HFD (60% fat, w/w) for 16 weeks. After the fourth week, mice were treated with or without phloretin by intraperitoneal injection for 12 weeks. Results Phloretin significantly reduced excessive lipid accumulation and decreased sterol regulatory element-binding protein 1c, blocking the expression of fatty acid synthase in oleic acid-induced HepG2 cells. Phloretin increased Sirt1, and phosphorylation of AMP activated protein kinase to suppress acetyl-CoA carboxylase expression, reducing fatty acid synthesis in hepatocytes. Phloretin also reduced body weight and fat weight compared to untreated HFD-fed mice. Phloretin also reduced liver weight and liver lipid accumulation and improved hepatocyte steatosis in obese mice. In liver tissue from obese mice, phloretin suppressed transcription factors of lipogenesis and fatty acid synthase, and increased lipolysis and fatty acid β-oxidation. Furthermore, phloretin regulated serum leptin, adiponectin, triglyceride, low-density lipoprotein, and free fatty acid levels in obese mice. Conclusions These findings suggest that phloretin improves hepatic steatosis by regulating lipogenesis and the Sirt-1/AMPK pathway in the liver.


2019 ◽  
Vol 8 (10) ◽  
pp. 1664 ◽  
Author(s):  
Yung-Chia Chen ◽  
Hsin-Ju Chen ◽  
Bu-Miin Huang ◽  
Yu-Chi Chen ◽  
Chi-Fen Chang

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease found worldwide. The present study aimed to evaluate the mechanisms of inhibiting lipid accumulation in free fatty acid (FFA)-treated HepG2 cells caused by bark and fruit extracts of Toona sinensis (TSB and TSF). FFA induced lipid and triglyceride (TG) accumulation, which was attenuated by TSB and TSF. TSB and/or TSF promoted phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase and peroxisome proliferator-activated receptor alpha upregulation. Furthermore, TSB and TSF suppressed FFA-induced liver X receptor, sterol regulatory element-binding transcription protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 protein expression. Moreover, TSB and/or TSF induced phosphorylation of Unc-51 like autophagy-activating kinase and microtubule-associated protein 1A/1B-light chain 3 expressions. Therefore, TSB and TSF relieve lipid accumulation by attenuating lipogenic protein expression, activating the AMPK pathway, and upregulating the autophagic flux to enhance lipid metabolism. Moreover, TSB and TSF reduced TG contents, implying the therapeutic use of TSB and TSF in NAFLD.


Sign in / Sign up

Export Citation Format

Share Document