Satellite-based estimation of cloud-base heights using constrained spectral radiance matching

2015 ◽  
Vol 142 (694) ◽  
pp. 224-232 ◽  
Author(s):  
X. J. Sun ◽  
H. R. Li ◽  
H. W. Barker ◽  
R. W. Zhang ◽  
Y. B. Zhou ◽  
...  
Keyword(s):  
2020 ◽  
Vol 12 (4) ◽  
pp. 668 ◽  
Author(s):  
Sijie Chen ◽  
Chonghui Cheng ◽  
Xingying Zhang ◽  
Lin Su ◽  
Bowen Tong ◽  
...  

A cloud structure construction algorithm adapted for the nighttime condition is proposed and evaluated. The algorithm expands the vertical information inferred from spaceborne radar and lidar via matching of infrared (IR) radiances and other properties at off-nadir locations with their counterparts that are collocated with active footprints. This nighttime spectral radiance matching (NSRM) method is tested using measurements from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS). Cloud layer heights are estimated up to 400 km on both sides of the ground track and reconstructed with the dead zone setting for an approximate evaluation of the reliability. By mimicking off-nadir pixels with a dead zone around pixels along the ground track, reconstruction of nadir profiles shows that, at 200 km from the ground track, the cloud top height (CTH) and the cloud base height (CBH) reconstructed by the NSRM method are within 1.49 km and 1.81 km of the original measurements, respectively. The constructed cloud structure is utilized for cloud classification in the nighttime. The same method is applied to the daytime measurements for comparison with collocated MODIS classification based on the International Satellite Cloud Climatology Project (ISCCP) standard. The comparison of eight cloud types over the expanded distance shows good agreement in general.


2020 ◽  
pp. 9-24
Author(s):  
Peter Bodrogi ◽  
Xue Guo ◽  
Tran Quoc Khanh

The brightness perception of a large (41°) uniform visual field was investigated in a visual psychophysical experiment. Subjects assessed the brightness of 20 light source spectra of different chromaticities at two luminance levels, Lv=267.6 cd/m2 and Lv=24.8 cd/m2. The resulting mean subjective brightness scale values were modelled by a combination of the signals of retinal mechanisms: S-cones, rods, intrinsically photosensitive retinal ganglion cells (ipRGCs) and the difference of the L-cone signal and the M-cone signal. A new quantity, “relative spectral blue content”, was also considered for modelling. This quantity was defined as “the spectral radiance of the light stimulus integrated with the range (380–520) nm, relative to luminance”. The “relative spectral blue content” model could describe the subjective brightness perception of the observers with reasonable accuracy.


2018 ◽  
Vol 76 (1) ◽  
pp. 87-94 ◽  
Author(s):  
PW Miller ◽  
TL Mote ◽  
CA Ramseyer ◽  
AE Van Beusekom ◽  
M Scholl ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 1915
Author(s):  
Joe K. Taylor ◽  
Henry E. Revercomb ◽  
Fred A. Best ◽  
David C. Tobin ◽  
P. Jonathan Gero

The Absolute Radiance Interferometer (ARI) is an infrared spectrometer designed to serve as an on-orbit radiometric reference with the ultra-high accuracy (better than 0.1 K 3‑σ or k = 3 brightness temperature at scene brightness temperature) needed to optimize measurement of the long-term changes of Earth’s atmosphere and surface. If flown in an orbit that frequently crosses sun-synchronous orbits, ARI could be used to inter-calibrate the international fleet of infrared (IR) hyperspectral sounders to similar measurement accuracy, thereby establishing an observing system capable of achieving sampling biases on high-information-content spectral radiance products that are also < 0.1 K 3‑σ. It has been shown that such a climate observing system with <0.1 K 2‑σ overall accuracy would make it possible to realize times to detect subtle trends of temperature and water vapor distributions that closely match those of an ideal system, given the limit set by the natural variability of the atmosphere. This paper presents the ARI sensor's overall design, the new technologies developed to allow on-orbit verification and test of its accuracy, and the laboratory results that demonstrate its capability. In addition, we describe the techniques and uncertainty estimates for transferring ARI accuracy to operational sounders, providing economical global coverage. Societal challenges posed by climate change suggest that a Pathfinder ARI should be deployed as soon as possible.


2014 ◽  
Vol 71 (2) ◽  
pp. 655-664 ◽  
Author(s):  
J. J. van der Dussen ◽  
S. R. de Roode ◽  
A. P. Siebesma

Abstract The relationship between the inversion stability and the liquid water path (LWP) tendency of a vertically well-mixed, adiabatic stratocumulus cloud layer is investigated in this study through the analysis of the budget equation for the LWP. The LWP budget is mainly determined by the turbulent fluxes of heat and moisture at the top and the base of the cloud layer, as well as by the source terms due to radiation and precipitation. Through substitution of the inversion stability parameter κ into the budget equation, it immediately follows that the LWP tendency will become negative for increasing values of κ due to the entrainment of increasingly dry air. Large κ values are therefore associated with strong cloud thinning. Using the steady-state solution for the LWP, an equilibrium value κeq is formulated, beyond which the stratocumulus cloud will thin. The Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II) is used to illustrate that, depending mainly on the magnitude of the moisture flux at cloud base, stratocumulus clouds can persist well within the buoyancy reversal regime.


2010 ◽  
Vol 10 (14) ◽  
pp. 6527-6536 ◽  
Author(s):  
M. A. Brunke ◽  
S. P. de Szoeke ◽  
P. Zuidema ◽  
X. Zeng

Abstract. Here, liquid water path (LWP), cloud fraction, cloud top height, and cloud base height retrieved by a suite of A-train satellite instruments (the CPR aboard CloudSat, CALIOP aboard CALIPSO, and MODIS aboard Aqua) are compared to ship observations from research cruises made in 2001 and 2003–2007 into the stratus/stratocumulus deck over the southeast Pacific Ocean. It is found that CloudSat radar-only LWP is generally too high over this region and the CloudSat/CALIPSO cloud bases are too low. This results in a relationship (LWP~h9) between CloudSat LWP and CALIPSO cloud thickness (h) that is very different from the adiabatic relationship (LWP~h2) from in situ observations. Such biases can be reduced if LWPs suspected to be contaminated by precipitation are eliminated, as determined by the maximum radar reflectivity Zmax>−15 dBZ in the apparent lower half of the cloud, and if cloud bases are determined based upon the adiabatically-determined cloud thickness (h~LWP1/2). Furthermore, comparing results from a global model (CAM3.1) to ship observations reveals that, while the simulated LWP is quite reasonable, the model cloud is too thick and too low, allowing the model to have LWPs that are almost independent of h. This model can also obtain a reasonable diurnal cycle in LWP and cloud fraction at a location roughly in the centre of this region (20° S, 85° W) but has an opposite diurnal cycle to those observed aboard ship at a location closer to the coast (20° S, 75° W). The diurnal cycle at the latter location is slightly improved in the newest version of the model (CAM4). However, the simulated clouds remain too thick and too low, as cloud bases are usually at or near the surface.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takayuki Kaneko ◽  
Atsushi Yasuda ◽  
Toshitsugu Fujii

AbstractThe effusion rate of lava is one of the most important eruption parameters, as it is closely related to the migration process of magma underground and on the surface, such as changes in lava flow direction or formation of new effusing vents. Establishment of a continuous and rapid estimation method has been an issue in volcano research as well as disaster prevention planning. For effusive eruptions of low-viscosity lava, we examined the relationship between the nighttime spectral radiance in the 1.6-µm band of the Himawari-8 satellite (R1.6Mx: the pixel value showing the maximum radiance in the heat source area) and the effusion rate using data from the 2017 Nishinoshima activity. Our analysis confirmed that there was a high positive correlation between these two parameters. Based on the linear-regression equation obtained here (Y = 0.47X, where Y is an effusion rate of 106 m3 day−1 and X is an R1.6Mx of 106 W m−2 sr−1 m−1), we can estimate the lava-effusion rate from the observation data of Himawari-8 via a simple calculation. Data from the 2015 Raung activity—an effusive eruption of low-viscosity lava—were arranged along the extension of this regression line, which suggests that the relationship is applicable up to a level of ~ 2 × 106 m3 day−1. We applied this method to the December 2019 Nishinoshima activity and obtained an effusion rate of 0.50 × 106 m3 day−1 for the initial stage. We also calculated the effusion rate for the same period based on a topographic method, and verified that the obtained value, 0.48 × 106 m3 day−1, agreed with the estimation using the Himawari-8 data. Further, for Nishinoshima, we simulated the extent of hazard areas from the initial lava flow and compared cases using the effusion rate obtained here and the value corresponding to the average effusion rate for the 2013–2015 eruptions. The former distribution was close to the actual distribution, while the latter was much smaller. By combining this effusion-rate estimation method with real-time observations by Himawari-8 and lava-flow simulation software, we can build a rapid and precise prediction system for volcano hazard areas.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 193
Author(s):  
Fenli Chen ◽  
Mingjun Zhang ◽  
Athanassios A. Argiriou ◽  
Shengjie Wang ◽  
Qian Ma ◽  
...  

The deuterium excess in precipitation is an effective indicator to assess the existence of sub-cloud evaporation of raindrops. Based on the synchronous measurements of stable isotopes of hydrogen and oxygen (δ2H and δ18O) in precipitation for several sites in Lanzhou, western China, spanning for approximately four years, the variations of deuterium excess between the ground and the cloud base are evaluated by using a one-box Stewart model. The deuterium excess difference below the cloud base during summer (−17.82‰ in Anning, −11.76‰ in Yuzhong, −21.18‰ in Gaolan and −12.41‰ in Yongdeng) is greater than that in other seasons, and difference in winter is weak due to the low temperature. The variations of deuterium excess in precipitation due to below-cloud evaporation are examined for each sampling site and year. The results are useful to understand the modification of raindrop isotope composition below the cloud base at a city scale, and the quantitative methods provide a case study for a semi-arid region at the monsoon margin.


2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


Sign in / Sign up

Export Citation Format

Share Document