Surface temperature variability in climate models with large and small internal climate variability

Author(s):  
Sang‐Wook Yeh ◽  
Seung‐Hwon Hyun ◽  
In‐Hong Park ◽  
Xiao‐Tong Zheng
2020 ◽  
Vol 24 (6) ◽  
pp. 3251-3269 ◽  
Author(s):  
Chao Gao ◽  
Martijn J. Booij ◽  
Yue-Ping Xu

Abstract. Projections of streamflow, particularly of extreme flows under climate change, are essential for future water resources management and the development of adaptation strategies to floods and droughts. However, these projections are subject to uncertainties originating from different sources. In this study, we explored the possible changes in future streamflow, particularly for high and low flows, under climate change in the Qu River basin, eastern China. ANOVA (analysis of variance) was employed to quantify the contribution of different uncertainty sources from RCPs (representative concentration pathways), GCMs (global climate models) and internal climate variability, using an ensemble of 4 RCP scenarios, 9 GCMs and 1000 simulated realizations of each model–scenario combination by SDRM-MCREM (a stochastic daily rainfall model coupling a Markov chain model with a rainfall event model). The results show that annual mean flow and high flows are projected to increase and that low flows will probably decrease in 2041–2070 (2050s) and 2071–2100 (2080s) relative to the historical period of 1971–2000, suggesting a higher risk of floods and droughts in the future in the Qu River basin, especially for the late 21st century. Uncertainty in mean flows is mostly attributed to GCM uncertainty. For high flows and low flows, internal climate variability and GCM uncertainty are two major uncertainty sources for the 2050s and 2080s, while for the 2080s, the effect of RCP uncertainty becomes more pronounced, particularly for low flows. The findings in this study can help water managers to become more knowledgeable about and get a better understanding of streamflow projections and support decision making regarding adaptations to a changing climate under uncertainty in the Qu River basin.


2011 ◽  
Vol 24 (23) ◽  
pp. 6203-6209 ◽  
Author(s):  
Fabian Lienert ◽  
John C. Fyfe ◽  
William J. Merryfield

Abstract This study evaluates the ability of global climate models to reproduce observed tropical influences on North Pacific Ocean sea surface temperature variability. In an ensemble of climate models, the study finds that the simulated North Pacific response to El Niño–Southern Oscillation (ENSO) forcing is systematically delayed relative to the observed response because of winter and spring mixed layers in the North Pacific that are too deep and air–sea feedbacks that are too weak. Model biases in mixed layer depth and air–sea feedbacks are also associated with a model mean ENSO-related signal in the North Pacific whose amplitude is overestimated by about 30%. The study also shows that simulated North Pacific variability has more power at lower frequencies than is observed because of model errors originating in the tropics and extratropics. Implications of these results for predictions on seasonal, decadal, and longer time scales are discussed.


2008 ◽  
Vol 21 (23) ◽  
pp. 6425-6444 ◽  
Author(s):  
David W. Pierce ◽  
Tim P. Barnett ◽  
Hugo G. Hidalgo ◽  
Tapash Das ◽  
Céline Bonfils ◽  
...  

Abstract Observations show snowpack has declined across much of the western United States over the period 1950–99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D–A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean–atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D–A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.


2015 ◽  
Vol 5 (6) ◽  
pp. 555-559 ◽  
Author(s):  
Aiguo Dai ◽  
John C. Fyfe ◽  
Shang-Ping Xie ◽  
Xingang Dai

2021 ◽  
Author(s):  
Sebastian Sippel ◽  
Nicolai Meinshausen ◽  
Eniko Székely ◽  
Erich Fischer ◽  
Angeline G. Pendergrass ◽  
...  

<p>Warming of the climate system is unequivocal and substantially exceeds unforced internal climate variability. Detection and attribution (D&A) employs spatio-temporal fingerprints of the externally forced climate response to assess the magnitude of a climate signal, such as the multi-decadal global temperature trend, while internal variability is often estimated from unforced (“control”) segments of climate model simulations (e.g. Santer et al. 2019). Estimates of the exact magnitude of decadal-scale internal variability, however, remain uncertain and are limited by relatively short observed records, their entanglement with the forced response, and considerable spread of simulated variability across climate models. Hence, a limitation of D&A is that robustness and confidence levels depend on the ability of climate models to correctly simulate internal variability (Bindoff et al., 2013).</p><p>For example, the large spread in simulated internal variability across climate models implies that the observed 40-year global mean temperature trend of about 0.76°C (1980-2019) would exceed the standard deviation of internally generated variability of a set of `low variability' models by far (> 5σ), corresponding to vanishingly small probabilities if taken at face value. But the observed trend would exceed the standard deviation of a few `high-variability' climate models `only' by a factor of about two, thus unlikely to be internally generated but not practically impossible given unavoidable climate system and observational uncertainties. This illustrates the key role of model uncertainty in the simulation of internal variability for D&A confidence estimates.</p><p>Here we use a novel statistical learning method to extract a fingerprint of climate change that is robust towards model differences and internal variability, even of large amplitude. We demonstrate that externally forced warming is distinct from internal variability and detectable with high confidence on any state-of-the-art climate model, even those that simulate the largest magnitude of unforced multi-decadal variability. Based on the median of all models, it is extremely likely that more than 85% of the observed warming trend over the last 40 years is externally driven. Detection remains robust even if their main modes of decadal variability would be scaled by a factor of two. It is extremely likely that at least 55% of the observed warming trend over the last 40 years cannot be explained by internal variability irrespective of which climate model’s natural variability estimates are used.</p><p>Our analysis helps to address this limitation in attributing warming to external forcing and provides a novel perspective for quantifying the magnitude of forced climate change even under uncertain but potentially large multi-decadal internal climate variability. This opens new opportunities to make D&A fingerprints robust in the presence of poorly quantified yet important features inextricably linked to model structural uncertainty, and the methodology may contribute to more robust detection and attribution of climate change to its various drivers.</p><p> </p><p>Bindoff, N.L., et al., 2013. Detection and attribution of climate change: from global to regional. IPCC AR5, WG1, Chapter 10.</p><p>Santer, B.D., et al., 2019. Celebrating the anniversary of three key events in climate change science. <em>Nat Clim Change</em> <strong>9</strong>(3), pp. 180-182.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2920
Author(s):  
Sergei Soldatenko ◽  
Alexey Bogomolov ◽  
Andrey Ronzhin

The current climate change, unlike previous ones, is caused by human activity and is characterized by an unprecedented rate of increase in the near-surface temperature and an increase in the frequency and intensity of hazardous weather and climate events. To survive, society must be prepared to implement adaptation strategies and measures to mitigate the negative effects of climate change. This requires, first of all, knowledge of how the climate will change in the future. To date, mathematical modelling remains the only method and effective tool that is used to predict the climate system’s evolution under the influence of natural and anthropogenic perturbations. It is important that mathematics and its methods and approaches have played a vital role in climate research for several decades. In this study, we examined some mathematical methods and approaches, primarily, mathematical modelling and sensitivity analysis, for studying the Earth’s climate system, taking into account the dependence of human health on environmental conditions. The essential features of stochastic climate models and their application for the exploration of climate variability are examined in detail. As an illustrative example, we looked at the application of a low-order energy balance model to study climate variability. The effects of variations in feedbacks and the climate system’s inertia on the power spectrum of global mean surface temperature fluctuations that characterized the distribution of temperature variance over frequencies were estimated using a sensitivity analysis approach. Our confidence in the obtained results was based on the satisfactory agreement between the theoretical power spectrum that was derived from the energy balance model and the power spectrum that was obtained from observations and coupled climate models, including historical runs of the CMIP5 models.


Author(s):  
Dörthe Handorf ◽  
Wolfgang Dorn ◽  
Klaus Dethloff ◽  
Annette Rinke ◽  
Antje Weisheimer

2015 ◽  
Vol 11 (3) ◽  
pp. 605-618 ◽  
Author(s):  
C. M. Brierley

Abstract. Following reconstructions suggesting weakened temperature gradients along the Equator in the early Pliocene, there has been much speculation about Pliocene climate variability. A major advance for our knowledge about the later Pliocene has been the coordination of modelling efforts through the Pliocene Model Intercomparison Project (PlioMIP). Here the changes in interannual modes of sea surface temperature variability will be presented across PlioMIP. Previously, model ensembles have shown little consensus in the response of the El Niño–Southern Oscillation (ENSO) to imposed forcings – either for the past or future. The PlioMIP ensemble, however, shows surprising agreement, with eight models simulating reduced variability and only one model indicating no change. The Pliocene's robustly weaker ENSO also saw a shift to lower frequencies. Model ensembles focussed on a wide variety of forcing scenarios have not yet shown this level of coherency. Nonetheless, the PlioMIP ensemble does not show a robust response of either ENSO flavour or sea surface temperature variability in the tropical Indian and North Pacific oceans. Existing suggestions linking ENSO properties to to changes in zonal temperature gradient, seasonal cycle and the elevation of the Andes Mountains are investigated, yet prove insufficient to explain the consistent response. The reason for this surprisingly coherent signal warrants further investigation.


2017 ◽  
Vol 30 (12) ◽  
pp. 4763-4776 ◽  
Author(s):  
Anson H. Cheung ◽  
Michael E. Mann ◽  
Byron A. Steinman ◽  
Leela M. Frankcombe ◽  
Matthew H. England ◽  
...  

Low-frequency internal climate variability (ICV) plays an important role in modulating global surface temperature, regional climate, and climate extremes. However, it has not been completely characterized in the instrumental record and in the Coupled Model Intercomparison Project phase 5 (CMIP5) model ensemble. In this study, the surface temperature ICV of the North Pacific (NP), North Atlantic (NA), and Northern Hemisphere (NH) in the instrumental record and historical CMIP5 all-forcing simulations is isolated using a semiempirical method wherein the CMIP5 ensemble mean is applied as the external forcing signal and removed from each time series. Comparison of ICV signals derived from this semiempirical method as well as from analysis of ICV in CMIP5 preindustrial control runs reveals disagreement in the spatial pattern and amplitude between models and instrumental data on multidecadal time scales (>20 yr). Analysis of the amplitude of total variability and the ICV in the models and instrumental data indicates that the models underestimate ICV amplitude on low-frequency time scales (>20 yr in the NA; >40 yr in the NP), while agreement is found in the NH variability. A multiple linear regression analysis of ICV in the instrumental record shows that variability in the NP drives decadal-to-interdecadal variability in the NH, whereas the NA drives multidecadal variability in the NH. Analysis of the CMIP5 historical simulations does not reveal such a relationship, indicating model limitations in simulating ICV. These findings demonstrate the need to better characterize low-frequency ICV, which may help improve attribution and decadal prediction.


2018 ◽  
Vol 49 (2) ◽  
pp. 421-437 ◽  
Author(s):  
Mei-Jia Zhuan ◽  
Jie Chen ◽  
Ming-Xi Shen ◽  
Chong-Yu Xu ◽  
Hua Chen ◽  
...  

Abstract This study proposes a method to estimate the timing of human-induced climate change (HICC) emergence from internal climate variability (ICV) for hydrological impact studies based on climate model ensembles. Specifically, ICV is defined as the inter-member difference in a multi-member ensemble of a climate model in which human-induced climate trends have been removed through a detrending method. HICC is defined as the mean of multiple climate models. The intersection between HICC and ICV curves is defined as the time of emergence (ToE) of HICC from ICV. A case study of the Hanjiang River watershed in China shows that the temperature change has already emerged from ICV during the last century. However, the precipitation change will be masked by ICV up to the middle of this century. With the joint contributions of temperature and precipitation, the ToE of streamflow occurs about one decade later than that of precipitation. This implies that consideration for water resource vulnerability to climate should be more concerned with adaptation to ICV in the near-term climate (present through mid-century), and with HICC in the long-term future, thus allowing for more robust adaptation strategies to water transfer projects in China.


Sign in / Sign up

Export Citation Format

Share Document