A gravity-wave induced quasi-biennial oscillation in a three-dimensional mechanistic model

2001 ◽  
Vol 127 (576) ◽  
pp. 2005-2021 ◽  
Author(s):  
Bryan N. Lawrence
2008 ◽  
Vol 21 (18) ◽  
pp. 4664-4679 ◽  
Author(s):  
Manuel Pulido ◽  
John Thuburn

Abstract Using a variational technique, middle atmosphere gravity wave drag (GWD) is estimated from Met Office middle atmosphere analyses for the year 2002. The technique employs an adjoint model of a middle atmosphere dynamical model to minimize a cost function that measures the differences between the model state and observations. The control variables are solely the horizontal components of GWD; therefore, the minimization determines the optimal estimate of the drag. For each month, Met Office analyses are taken as the initial condition for the first day of the month, and also as observations for each successive day. In this way a three-dimensional GWD field is obtained for the entire year with a temporal resolution of 1 day. GWD shows a pronounced seasonal cycle. During solstices, there are deceleration regions of the polar jet centered at about 63° latitude in the winter hemisphere, with a peak of 49 m s−1 day−1 at 0.24 hPa in the Southern Hemisphere; the summer hemisphere also shows a deceleration region but much weaker, with a peak of 24 m s−1 day−1 centered at 45° latitude and 0.6 hPa. During equinoxes GWD is weak and exhibits a smooth transition between the winter and summer situation. The height and latitude of the deceleration center in both winter and summer hemispheres appear to be constant. Important longitudinal dependencies in GWD are found that are related to planetary wave activity; GWD intensifies in the exit region of jet streaks. In the lower tropical stratosphere, the estimated GWD shows a westward GWD descending together with the westward phase of the quasi-biennial oscillation. Above, GWD exhibits a semiannual pattern that is approximately out of phase with the semiannual oscillation in the zonal wind. Furthermore, a descending GWD pattern is found at those heights, similar in magnitude and sign to that in the lower stratosphere.


2019 ◽  
Vol 76 (9) ◽  
pp. 2941-2962
Author(s):  
Cory A. Barton ◽  
John P. McCormack ◽  
Stephen D. Eckermann ◽  
Karl W. Hoppel

Abstract A methodology is presented for objectively optimizing nonorographic gravity wave source parameters to minimize forecast error for target regions and forecast lead times. In this study, we employ a high-altitude version of the Navy Global Environmental Model (NAVGEM-HA) to ascertain the forcing needed to minimize hindcast errors in the equatorial lower stratospheric zonal-mean zonal winds in order to improve forecasts of the quasi-biennial oscillation (QBO) over seasonal time scales. Because subgrid-scale wave effects play a large role in driving the QBO, this method leverages the nonorographic gravity wave drag (GWD) parameterization scheme to provide the necessary forcing. To better constrain the GWD source parameters, we utilize ensembles of NAVGEM-HA hindcasts over the 2014–16 period with perturbed source parameters and develop a cost function to minimize errors in the equatorial lower stratosphere compared to analysis. Thus, we may determine the set of GWD source parameters that yields a forecast state that most closely agrees with observed QBO winds over each optimization time interval. Results show that the source momentum flux and phase speed spectrum width are the most important parameters. The seasonal evolution of optimal parameter value, specifically a robust semiannual periodicity in the source strength, is also revealed. Changes in optimal source parameters with increasing forecast lead time are seen, as the GWD parameterization takes on a more active role as QBO driver at longer forecast lengths. Implementation of a semiannually varying source function at the equator provides RMS error improvement in QBO winds over the default constant value.


2014 ◽  
Vol 45 (3-4) ◽  
pp. 825-836 ◽  
Author(s):  
Sebastian Schirber ◽  
Elisa Manzini ◽  
Thomas Krismer ◽  
Marco Giorgetta

2015 ◽  
Vol 15 (12) ◽  
pp. 6577-6587 ◽  
Author(s):  
Y.-H. Kim ◽  
H.-Y. Chun

Abstract. The momentum forcing of the QBO (quasi-biennial oscillation) by equatorial waves is estimated using recent reanalyses. Based on the estimation using the conventional pressure-level data sets, the forcing by the Kelvin waves (3–9 m s−1 month−1) dominates the net forcing by all equatorial wave modes (3–11 m s−1 month−1) in the easterly-to-westerly transition phase at 30 hPa. In the opposite phase, the net forcing by equatorial wave modes is small (1–5 m s−1 month−1). By comparing the results with those from the native model-level data set of the ERA-Interim reanalysis, it is suggested that the use of conventional-level data causes the Kelvin wave forcing to be underestimated by 2–4 m s−1 month−1. The momentum forcing by mesoscale gravity waves, which are unresolved in the reanalyses, is deduced from the residual of the zonal wind tendency equation. In the easterly-to-westerly transition phase at 30 hPa, the mesoscale gravity wave forcing is found to be smaller than the resolved wave forcing, whereas the gravity wave forcing dominates over the resolved wave forcing in the opposite phase. Finally, we discuss the uncertainties in the wave forcing estimates using the reanalyses.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2008 ◽  
Vol 65 (12) ◽  
pp. 3695-3718 ◽  
Author(s):  
Dong L. Wu ◽  
Stephen D. Eckermann

Abstract The gravity wave (GW)–resolving capabilities of 118-GHz saturated thermal radiances acquired throughout the stratosphere by the Microwave Limb Sounder (MLS) on the Aura satellite are investigated and initial results presented. Because the saturated (optically thick) radiances resolve GW perturbations from a given altitude at different horizontal locations, variances are evaluated at 12 pressure altitudes between ∼21 and 51 km using the 40 saturated radiances found at the bottom of each limb scan. Forward modeling simulations show that these variances are controlled mostly by GWs with vertical wavelengths λz > 5 km and horizontal along-track wavelengths of λy ∼ 100–200 km. The tilted cigar-shaped three-dimensional weighting functions yield highly selective responses to GWs of high intrinsic frequency that propagate toward the instrument. The latter property is used to infer the net meridional component of GW propagation by differencing the variances acquired from ascending (A) and descending (D) orbits. Because of improved vertical resolution and sensitivity, Aura MLS GW variances are ∼5–8 times larger than those from the Upper Atmosphere Research Satellite (UARS) MLS. Like UARS MLS variances, monthly-mean Aura MLS variances in January and July 2005 are enhanced when local background wind speeds are large, due largely to GW visibility effects. Zonal asymmetries in variance maps reveal enhanced GW activity at high latitudes due to forcing by flow over major mountain ranges and at tropical and subtropical latitudes due to enhanced deep convective generation as inferred from contemporaneous MLS cloud-ice data. At 21–28-km altitude (heights not measured by the UARS MLS), GW variance in the tropics is systematically enhanced and shows clear variations with the phase of the quasi-biennial oscillation, in general agreement with GW temperature variances derived from radiosonde, rocketsonde, and limb-scan vertical profiles. GW-induced temperature variances at ∼44-km altitude derived from operational global analysis fields of the ECMWF Integrated Forecast System in August 2006 reveal latitudinal bands of enhanced GW variance and preferred GW meridional propagation directions that are similar to those inferred from the MLS variances, highlighting the potential of MLS GW data for validating the stratospheric GWs simulated and/or parameterized in global models.


2005 ◽  
Vol 62 (12) ◽  
pp. 4178-4195 ◽  
Author(s):  
Lucy J. Campbell ◽  
Theodore G. Shepherd

Abstract Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.


2008 ◽  
Vol 65 (9) ◽  
pp. 2892-2906 ◽  
Author(s):  
Alexander Hasha ◽  
Oliver Bühler ◽  
John Scinocca

Abstract Operational gravity wave parameterization schemes in GCMs are columnar; that is, they are based on a ray-tracing model for gravity wave propagation that neglects horizontal propagation as well as refraction by horizontally inhomogeneous basic flows. Despite the enormous conceptual and numerical simplifications that these approximations provide, it has never been clearly established whether horizontal propagation and refraction are indeed negligible for atmospheric climate dynamics. In this study, a three-dimensional ray-tracing scheme for internal gravity waves that allows wave refraction and horizontal propagation in spherical geometry is formulated. Various issues to do with three-dimensional wave dynamics and wave–mean interactions are discussed, and then the scheme is applied to offline computations using GCM data and launch spectra provided by an operational columnar gravity wave parameterization scheme for topographic waves. This allows for side-by-side testing and evaluation of momentum fluxes in the new scheme against those of the parameterization scheme. In particular, the wave-induced vertical flux of angular momentum is computed and compared with the predictions of the columnar parameterization scheme. Consistent with a scaling argument, significant changes in the angular momentum flux due to three-dimensional refraction and horizontal propagation are confined to waves near the inertial frequency.


Sign in / Sign up

Export Citation Format

Share Document