scholarly journals Evaluation of surface roughness and nanostructure of indium tin oxide (ITO) films by atomic force microscopy

Scanning ◽  
2008 ◽  
Vol 30 (3) ◽  
pp. 232-239 ◽  
Author(s):  
G. Kavei ◽  
Y. Zare ◽  
A. Mohammadi Gheidari
2001 ◽  
Vol 708 ◽  
Author(s):  
Jung F. Kang ◽  
Katherine Harrison ◽  
S. Michael Kilbey

ABSTRACTWe have investigated the growth of polythiophene from self-assembled monolayers (SAMs) that contain pendant thiophene groups using electrochemistry and atomic force microscopy. The SAMs are formed on indium tin-oxide (ITO) by coadsorption of 11-(3-thienyl)undecyltrichlorosilane (3TUTS) and undecyltrichlorosilane (UTS). By altering the composition of the underlying monolayers we can manipulate the onset of electrochemical polymerization and affect the surface topography of the resultant polythiophene layer. Films made on SAMs that have high loadings of 3TUTS have small, distinct grains, but as the monolayers become enriched in UTS, the grain size increases; however, these films are neither as rough nor as diffuse as films formed on ITO without an underlying SAM. These experiments suggest that the electrochemical growth and structure of the polythiophene layer can be manipulated by tuning the underlying SAM.


2013 ◽  
Vol 832 ◽  
pp. 51-55
Author(s):  
M. Sobri ◽  
A. Shuhaimi ◽  
K.M. Hakim ◽  
M.H. Mamat ◽  
S. Najwa ◽  
...  

Nickel (Ni) / indium tin oxide (ITO) nanostructures were deposited on silicon (111) substrate by RF magnetron sputtering using a nickel target and metallic alloy target (In-Sn, 90%-10%). The post-deposition annealing has been done for Ni/ITO films in air and the effect of annealing temperature on the surface morphology of ITO films was studied. It has been found that the annealing temperatures increase the film surface roughness in Ni/ITO structure. At annealing temperature of 600°C, AFM analysis reveals the highest root mean square roughness, peak to valley and thickness value of 2.598 nm, 59.115 nm, and 11.358 nm, respectively. Watershed analysis on AFM images show that the numbers of grain boundaries in Ni/ITO are reduced when annealing temperature is increased to higher temperatures.


2014 ◽  
Vol 680 ◽  
pp. 131-134
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Steven Taniselass ◽  
Norhawati Ahmad ◽  
Chai Jee Keng ◽  
...  

An initial study has been conducted to characterize the surface morphology of treated Indium Tin Oxide (ITO). Treatment done is annealing process where the samples are put through heat and annealed for an hour. Time of deposition and layers of ITO has been varied to study the correlation between both.The treated ITO are examined under Atomic Force Microscopy (AFM) for the surface roughness and the grain size. Results shows that deposition time of ITO do play an important role in determining a desired grain size in ITO material.


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Gros-Otero ◽  
Samira Ketabi ◽  
Rafael Cañones-Zafra ◽  
Montserrat Garcia-Gonzalez ◽  
Cesar Villa-Collar ◽  
...  

Abstract Background To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). Methods Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of − 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 μm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. Results The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). Conclusion In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


1996 ◽  
Vol 428 ◽  
Author(s):  
G. O. Ramseyer ◽  
L. H. Walsh ◽  
J. V. Beasock ◽  
H. F. Helbig ◽  
R. C. Lacoe ◽  
...  

AbstractPatterned 930 nm Al(1%-Si) interconnects over 147 nm of Cu were electromigration lifetime tested at 1.0–1.5 × 105 A/cm2 at 250 °C. The morphology of the surfaces of the electromigrated stripes with different line widths and times to failure were characterized by atomic force microscopy, and changes in surface roughness were compared. The diffusion of copper into the electromigrated aluminum stripes was determined by depth profiling using Auger electron spectroscopy. In particular, areas where hillocks formed were examined and compared to areas of median roughness.


Sign in / Sign up

Export Citation Format

Share Document