Preparation and characterization of organic superlattice thin films grown on hydrogenated silicon single-crystal substrates

1994 ◽  
Vol 21 (6-7) ◽  
pp. 356-364 ◽  
Author(s):  
A. Ishitani ◽  
T. Nonaka
1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


1990 ◽  
Vol 5 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
S. J. Golden ◽  
H. Isotalo ◽  
M. Lanham ◽  
J. Mayer ◽  
F. F. Lange ◽  
...  

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.


1991 ◽  
Vol 05 (18) ◽  
pp. 1203-1211 ◽  
Author(s):  
C. ATTANASIO ◽  
L. MARITATO ◽  
A. NIGRO ◽  
S. PRISHEPA ◽  
R. SCAFURO

BSCCO thin films with T c (R = 0) higher than 80 K have been routinely prepared using a simple and reliable technique in which we completely electron beam evaporated weighted amounts of bulk pellets. The films were grown on MgO single crystal (100) substrates and showed, after an ex-situ annealing at high temperatures (840–880° C) for several hours, a strong preferential orientation with the c-axis perpendicular to the plane of the substrate. The films were characterized by Θ − 2Θ X-ray diffraction and EDS analysis and by paraconductivity and critical current measurements.


2005 ◽  
Vol 20 (9) ◽  
pp. L43-L46 ◽  
Author(s):  
Tae-hwan Kim ◽  
Sang-Hun Jeong ◽  
Il-Soo Kim ◽  
Sang Sub Kim ◽  
Byung-Teak Lee

2003 ◽  
Vol 48 (7) ◽  
pp. 929-935 ◽  
Author(s):  
Masaaki Futamoto ◽  
Kouta Terayama ◽  
Katsuaki Sato ◽  
Yoshiyuki Hirayama

1997 ◽  
Vol 12 (9) ◽  
pp. 2234-2248 ◽  
Author(s):  
E. Bonnotte ◽  
P. Delobelle ◽  
L. Bornier ◽  
B. Trolard ◽  
G. Tribillon

Two optical methods are presented for the mechanical characterization of thin films, namely real time holographic interferometry and a fringe projection method called “contouring.” These two methods are coupled to the interferometry by the phase measurements, thus allowing the displacement field to be measured at all points on the membrane. We discuss the solutions retained in terms of their precision and sensitivity. These methods are then applied to membrane bulging tests, a type of test that is widely used in micro-mechanical studies. The measurements are performed on silicon single crystal and the results are compared to the solutions calculated by finite element methods. In both cases, the good agreement between theory and experiments allows the experimental apparatus to be validated.


2000 ◽  
Vol 88 (4) ◽  
pp. 1907-1915 ◽  
Author(s):  
Tatiana Globus ◽  
Gautam Ganguly ◽  
Pere Roca i Cabarrocas

Sign in / Sign up

Export Citation Format

Share Document