scholarly journals Mast cell‐deficient mice Mcpt5Cre/Dicer fl/fl redefine the role of mast cells in experimental bullous pemphigoid

2021 ◽  
Author(s):  
S. Nsiah‐Dosu ◽  
C. Scholz ◽  
Z. Orinska ◽  
C. D. Sadik ◽  
R. J. Ludwig ◽  
...  
2019 ◽  
Vol 54 (4) ◽  
pp. 1900685 ◽  
Author(s):  
Gunnar Pejler

It is now well established that mast cells (MCs) play a crucial role in asthma. This is supported by multiple lines of evidence, including both clinical studies and studies on MC-deficient mice. However, there is still only limited knowledge of the exact effector mechanism(s) by which MCs influence asthma pathology. MCs contain large amounts of secretory granules, which are filled with a variety of bioactive compounds including histamine, cytokines, lysosomal hydrolases, serglycin proteoglycans and a number of MC-restricted proteases. When MCs are activated, e.g. in response to IgE receptor cross-linking, the contents of their granules are released to the exterior and can cause a massive inflammatory reaction. The MC-restricted proteases include tryptases, chymases and carboxypeptidase A3, and these are expressed and stored at remarkably high levels. There is now emerging evidence supporting a prominent role of these enzymes in the pathology of asthma. Interestingly, however, the role of the MC-restricted proteases is multifaceted, encompassing both protective and detrimental activities. Here, the current knowledge of how the MC-restricted proteases impact on asthma is reviewed.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xiang Zhang ◽  
Hongquan Dong ◽  
Fei Wang ◽  
Jun Zhang

Neuroinflammation plays a key role in the occurrence and development of neurodegenerative diseases. Microglia, the resident immune cells in the brain, have been recognized to contribute to neuroinflammation. Previous studies have shown that activated mast cells may be involved in surgery-induced neuroinflammation and neuronal apoptosis by using pharmacological methods. This study is aimed at ascertaining the exactly role of mast cells on neuroinflammation with the mast cell-deficient mice. Adult male C57BL6/J wild-type (WT) and mast cell-deficient (C57BL6/J KitWsh/Wsh (Wsh)) mice underwent tibial fracture surgery. Blood-brain barrier (BBB) breakdown, microglial activation, and neuroinflammatory levels were examined at 1 day after surgery. Surgery-induced BBB breakdown, microglial activation, and neuroinflammatory levels were significantly, pharmacologically reduced using a mast cell stabilizer, cromolyn sodium in WT mice (P<0.05). These results were reproduced with mast cell deficiency. WT mice administered intraventricularly with cromolyn exhibited reduced BBB breakdown, microglial activation, and neuroinflammatory levels versus vehicle (P<0.05). But there was no effect of cromolyn versus vehicle in Wsh mice, clarifying the specificity of cromolyn on brain mast cells. These findings demonstrated that activated mast cells promote surgery-induced BBB breakdown and neuroinflammation in mice, and open up a new therapeutic target for neuroinflammation-related diseases.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Nathan M. Ryan ◽  
Steve Oghumu

Abstract Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth Hymenolepis diminuta. The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.


1991 ◽  
Vol 55 ◽  
pp. 37
Author(s):  
Hiroshi Hoshino ◽  
Hideki Kobayashi ◽  
Mitsuru Adachi ◽  
Terumi Takahashi
Keyword(s):  

Allergy ◽  
2021 ◽  
Author(s):  
Lea Pohlmeier ◽  
Sanchaita Sriwal Sonar ◽  
Hans‐Reimer Rodewald ◽  
Manfred Kopf ◽  
Luigi Tortola

1984 ◽  
Vol 62 (6) ◽  
pp. 734-737 ◽  
Author(s):  
F. Shanahan ◽  
J. A. Denburg ◽  
J. Bienenstock ◽  
A. D. Befus

Increasing evidence for the existence of inter- and intra-species mast cell heterogeneity has expanded the potential biological role of this cell. Early studies suggesting that mast cells at mucosal sites differ morphologically and histochemically from connective tissue mast cells have been confirmed using isolated intestinal mucosal mast cells in the rat and more recently in man. These studies also established that mucosal mast cells are functionally distinct from connective tissue mast cells. Thus, mucosal and connective tissue mast cells differ in their responsiveness to a variety of mast cell secretagogues and antiallergic agents. Speculation about the therapeutic use of antiallergic drugs in disorders involving intestinal mast cells cannot, therefore, be based on extrapolation from studies of their effects on mast cells from other sites. Regulatory mechanisms for mast cell secretion may also be heterogeneous since mucosal mast cells differ from connective tissue mast cells in their response to a variety of physiologically occurring regulatory peptides. The development of techniques to purify isolated mast cell sub-populations will facilitate future analysis of the biochemical basis of the functional heterogeneity of mast cells.


1996 ◽  
Vol 80 (4) ◽  
pp. 1322-1330 ◽  
Author(s):  
M. Longphre ◽  
L. Y. Zhang ◽  
J. R. Harkema ◽  
S. R. Kleeberger

Ozone (O3) exposure produces inflammation in the airways of humans and animal models. However, the mechanism by which O3 affects these changes is uncertain. Mast cells are strategically located below the epithelium of the airways and are capable of releasing a number of proinflammatory mediators. We tested the hypothesis that mast cells contribute to inflammation, epithelial sloughing, and epithelial proliferation in the nasal and terminal bronchiolar murine airways after O3 exposure. Mast cell-sufficient (+/+), mast cell-deficient (W/Wv), and mast cell-repleted [bone marrow-transplanted (BMT) W/Wv] mice were exposed to 2 ppm O3 or filtered air for 3 h. Nasal and bronchoalveolar lavage fluids were collected 6 and 24 h after exposure. Differential cell counts and protein content of the lavage fluids were used as indicators of inflammation and permeability changes in the airways. O3-induced epithelial injury was assessed by light microscopy, and O3-induced DNA synthesis in airway epithelium was estimated by using a 5-bromo-2′-deoxyuridine-labeling index in the nasal and terminal bronchiolar epithelia. Relative to air control mice, O3 caused significant increases in inflammation, epithelial injury, and epithelial DNA synthesis in +/+ mice. There was no significant effect of O3 exposure on any measured parameter in the W/Wv mice. To further assess the role of mast cells in O3-induced epithelial damage, mast cells were restored in W/Wv mice by BMT from +/+ congeners. Relative to sham-transplanted W/Wv mice, O3 caused significant increases in epithelial damage and DNA synthesis as well as inflammatory indicators in BMT W/Wv mice. These observations are consistent with the hypothesis that mast cells significantly modulate the inflammatory and proliferative responses of the murine airways to O3.


2018 ◽  
Vol 11 (556) ◽  
pp. eaao4354 ◽  
Author(s):  
Ivana Halova ◽  
Monika Bambouskova ◽  
Lubica Draberova ◽  
Viktor Bugajev ◽  
Petr Draber

Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.


Sign in / Sign up

Export Citation Format

Share Document