Preparation of Polyvinyl alcohol Hydrogel Braided Wire Reinforced by Soluble starch Granules Based on Magnetoionic induction and Piezoelectric sensing

2021 ◽  
Vol 6 (43) ◽  
pp. 11931-11938
Author(s):  
Zhiqiang Liu ◽  
Jinqiang Fan ◽  
Minggui Zou ◽  
Xu Ma ◽  
Yan Niu ◽  
...  
2001 ◽  
Vol 67 (8) ◽  
pp. 3469-3475 ◽  
Author(s):  
R. Crittenden ◽  
A. Laitila ◽  
P. Forssell ◽  
J. Mättö ◽  
M. Saarela ◽  
...  

ABSTRACT Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 andBifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for α-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of ≤3. Adhesion was not affected by bile, but the binding capacity of the starch was reduced by exposure to pancreatin. It may be possible to exploit adhesion of probiotic bifidobacteria to starch granules in microencapsulation technology and for synbiotic food applications.


2020 ◽  
Author(s):  
Hui You ◽  
Ouling Zhang ◽  
Xu Liang ◽  
Cheng Liang ◽  
Yongjun Chen ◽  
...  

Abstract BackgroundResistant Starch (RS) is a functional starch that has functions of regulating diabetes, hypertension and obesity. The effects of most starch synthesis-related genes (SSRGs) on RS content and their relationships are largely unknown. ResultsIn current study, ninety-nine lines from a recombinant inbred line were selected to investigate the effects of SSRGs on the RS content in different process status. Results revealed that RS content decreased dramatically after cooking, but it did not increase significantly after cooling for 7 days. And RS was closely related to many indexes of physicochemical properties, but was not correlated with granule size. Waxy (Wx) played an important role in controlling RS content and Wxa could elevate RS content in raw milled rice, cooked rice and retrograded rice. Soluble starch synthase IIa (SSIIa) had an impact on RS2, and RS2 content of indica SSIIa were significantly higher than that of japonica SSIIa (SSIIaj). Moreover, interaction of Wx and SSIIa was responsible for variations of RS content in three sample types, RS2 and volume proportion of different size starch granules. ConclusionsWx and SSIIa together significantly regulate different types content of RS in rice, but SSIIa only affects RS2. Wxa-SSIIaj is favorable to forming large-diameter starch granules.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1983
Author(s):  
Ahsan Irshad ◽  
Huijun Guo ◽  
Shoaib Ur Rehman ◽  
Xueqing Wang ◽  
Chaojie Wang ◽  
...  

Cereal crops have starch in their endosperm, which has provided calories to humans and livestock since the dawn of civilization to the present day. Starch is one of the important biological factors which is contributing to the yield of cereal crops. Starch is synthesized by different enzymes, but starch structure and amount are mainly determined by the activities of starch synthase enzymes (SS) with the involvement of starch branching enzymes (SBEs) and debranching enzymes (DBEs). Six classes of SSs are found in Arabidopsis and are designated as soluble SSI-V, and non-soluble granule bound starch synthase (GBSS). Soluble SSs are important for starch yield considering their role in starch biosynthesis in cereal crops, and the activities of these enzymes determine the structure of starch and the physical properties of starch granules. One of the unique characteristics of starch structure is elongated glucan chains within amylopectin, which is by SSs through interactions with other starch biosynthetic enzymes (SBEs and DBEs). Additionally, soluble SSs also have conserved domains with phosphorylation sites that may be involved in regulating starch metabolism and formation of heteromeric SS complexes. This review presents an overview of soluble SSs in cereal crops and includes their functional and structural characteristics in relation to starch synthesis.


2014 ◽  
Vol 513-517 ◽  
pp. 193-196
Author(s):  
Xian Zhong Mo ◽  
Jian Bo Jiang ◽  
Xue Mei Huang ◽  
Feng Nv Yu ◽  
Jiang Ying Wu ◽  
...  

The starch-based foam was preprared by moulding process and studied the effects on the density, mechanical properties, hardness and water absorption capacity of the foams with different polyvinyl alcohol (PVA) contents. The microstructure and crystallization of the foam was observed through the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the addition of PVA could better improve the material mechanical properties, the elongation at break was increased from 15.72% to 113.86% while the hardness was reduced from 37.3 to 16.7. The density of foam reached to the minimum value of 0.261 g/cm3, attaining to the maximum tensile strength of 1.08 Mpa. SEM and XRD showed that the compatility of starch and PVA was very good and the addition of PVA helped to improve the bubble distribution of foam and inhibit the retrogradation of starch granules.


2018 ◽  
Author(s):  
Camille Vandromme ◽  
Corentin Spriet ◽  
David Dauvillée ◽  
Adeline Courseaux ◽  
Jean-Luc Putaux ◽  
...  

AbstractThe initiation of starch granule formation is still poorly understood. However, soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthetize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast-2-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of starch initiation process and accumulate, on average, one starch granule per plastid instead of the 5 to 7 granules found in plastids of wild-type plants. These granules are larger than in wild type and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in starch priming process in Arabidopsis leaves through interaction with SS4.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Kiransinh N. Rajput ◽  
Kamlesh C. Patel ◽  
Ujjval B. Trivedi

Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an important member of α-amylase family which can degrade the starch and produce cyclodextrins (CDs) as a result of intramolecular transglycosylation (cyclization). β-Cyclodextrin production was carried out using the purified CGTase enzyme from an alkaliphile Microbacterium terrae KNR 9 with different starches in raw as well as gelatinized form. Cyclodextrin production was confirmed using thin layer chromatography. Six different starch substrates, namely, soluble starch, potato starch, sago starch, corn starch, corn flour, and rice flour, were tested for CD production. Raw potato starch granules were found to be the best substrate giving 13.46 gm/L of cyclodextrins after 1 h of incubation at 60°C. Raw sago starch gave 12.96 gm/L of cyclodextrins as the second best substrate. To achieve the maximum cyclodextrin production, statistical optimization using Central Composite Design (CCD) was carried out with three parameters, namely, potato starch concentration, CGTase enzyme concentration, and incubation temperature. Cyclodextrin production of 28.22 (gm/L) was achieved with the optimized parameters suggested by the model which are CGTase 4.8 U/L, starch 150 gm/L, and temperature 55.6°C. The suggested optimized conditions showed about 15% increase in β-cyclodextrin production (28.22 gm/L) at 55.6°C as compared to 24.48 gm/L at 60°C. The degradation of raw potato starch granules by purified CGTase was also confirmed by microscopic observations.


1995 ◽  
Vol 22 (5) ◽  
pp. 793 ◽  
Author(s):  
S Rahman ◽  
B Kosar-Hashemi ◽  
MS Samuel ◽  
A Hill ◽  
DC Abbott ◽  
...  

Wheat starch contains two classes of associated proteins: proteins which are embedded within the granule and loosely associated surface proteins. The characterisation of the major proteins that are embedded in the granule are described. Gel electrophoresis on the basis of size resolved these proteins into five bands of molecular weights 60, 75, 85, 100 and 105 kDa. These polypeptides were demonstrated to be within the granule by their resistance to proteinase K digestion when granules were ungelatinised. The N-terminal sequences of these polypeptides are reported. The most prominent polypeptide is the 60 kDa granule-bound starch synthase. The N-terminal sequence obtained from the 75 kDa polypeptide shows homology to rice soluble starch synthase. The 85 kDa band was resolved into at least two types of polypeptides, one of which reacted with polyclonal antiserum to the maize branching enzyme IIb. The 100 and 105 kDa polypeptides were located only in the granule and are related, on the basis of N-terminal sequence similarity and cross-reactivity to monoclonal antibodies. SDS-PAGE and monoclonal antibody cross-reactivity experiments suggest that the 100 and 105 kDa polypeptides are absent from starch granules from all other species examined, including other cereals. It is speculated that all the major granule proteins are involved in starch biosynthesis.


Author(s):  
Jean-Claude Jésior ◽  
Roger Vuong ◽  
Henri Chanzy

Starch is arranged in a crystalline manner within its storage granules and should thus give sharp X-ray diagrams. Unfortunately most of the common starch granules have sizes between 1 and 100μm, making them too small for an X-ray study on individual grains. There is only one instance where an oriented X-ray diagram could be obtained on one sector of an individual giant starch granule. Despite their small size, starch granules are still too thick to be studied by electron diffraction with a transmission electron microscope. The only reported study on starch ultrastructure using electron diffraction on frozen hydrated material was made on small fragments. The present study has been realized on thin sectioned granules previously litnerized to improve the signal to noise ratio.Potato starch was hydrolyzed for 10 days in 2.2N HCl at 35°C, dialyzed against water until neutrality and embedded in Nanoplast. Sectioning was achieved with a commercially available low-angle “35°” diamond knife (Diatome) after a very carefull trimming and a pre-sectioning with a classical “45°” diamond knife. Sections obtained at a final sectioning angle of 42.2° (compared with the usual 55-60°) and at a nominal thickness of 900Å were collected on a Formvar-carbon coated grid. The exact location of the starch granules in their sections was recorded by optical microscopy on a Zeiss Universal polarizing microscope (Fig. 1a). After rehydration at a relative humidity of 95% for 24 hours they were mounted on a Philips cryoholder and quench frozen in liquid nitrogen before being inserted under frozen conditions in a Philips EM 400T electron microscope equipped with a Gatan anticontaminator and a Lhesa image intensifier.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Rahmawati Rahmawati ◽  
Trimayasari Trimayasari ◽  
Ghozali Akhmad Mustaqim ◽  
Wening Dwi Prastiwi ◽  
Emas Agus Prastyo Wibowo

AbstractSoap facial cleanser is needed to keep the facial skin to keep them clean and healthy. The purpose of this study to make soap cleanser with natural materials such as hard water deposits leri. This is because the use of leri water starch or starch granules of fine particles contained in water leri dansel dust can shed the dead skin on the face because of the essential amino acids contained can regenerate skin cells. In addition, water leri can brighten the face because the leri water oryzanol contain substances that can update the development and formation of the pigment melanin, which is effectively to ward off ultraviolet rays. The process of making soap using the principle of saponification reaction, namely the reaction between the oil and the KOH/NaOH. Facial cleansing soap made in this study is solid soap. Based on the results of quality test, soap solid leri water has a pH of 11.1, saponification number is 33, the water content of 46% as well as respondents to the test aspects of aroma and foam shows good results so this water leri treatment can be an alternative solution to prevent the use of soap facial cleansers that contain harmful chemicals. Keywords: air leri, soap cleanser, saponification  AbstrakSabun pembersih wajah sangat diperlukan untuk menjaga kulit wajah agar tetap bersih dan sehat. Tujuan dari penelitian ini untuk membuat sabun pembersih wajah dengan bahan alami berupa endapan air leri. Penggunaan air leri ini dikarenakan butiran partikel starch atau pati halus yang terdapat dalam air leri dapat merontokkan debu dansel kulit mati pada wajah karena asam amino esensial yang terkandung dapat meregenerasi sel-sel kulit. Selain itu, air leri dapat mencerahkan wajah karena air leri mengandung zat oryzanol yang dapat memperbarui perkembangan dan pembentukan pigmen melanin, yang efektif guna menangkal sinar ultraviolet. Proses pembuatan sabun menggunakan prinsip reaksi saponifikasi, yaitu reaksi antara minyak dan KOH/NaOH. Sabun pembersih wajah yang dibuat dalam penelitian ini ialah sabun padat. Berdasarkan hasil uji mutu, sabun air leri padat memiliki pH 11,1, angka penyabunan sebesar 33 kadar air 46 kadar air 46 % serta uji responden terhadap aspek aroma dan busa yang menunjukkan hasil cukup baik sehingga pengolahan air leri ini dapat menjadi solusi alternative untuk mencegah penggunaan sabun pembersih wajah yang mengandung bahan kimia berbahaya. Kata kunci: air leri, sabun pembersih wajah, saponifikasi 


Sign in / Sign up

Export Citation Format

Share Document