Gradient Architecture‐Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range

Small ◽  
2021 ◽  
pp. 2103312
Author(s):  
Bing Ji ◽  
Qian Zhou ◽  
Ming Lei ◽  
Sen Ding ◽  
Qi Song ◽  
...  
2016 ◽  
Vol 12 ◽  
pp. 42-50 ◽  
Author(s):  
N. Manikandan ◽  
S. Muruganand ◽  
K. Sriram ◽  
P. Balakrishnan ◽  
A. Suresh Kumar

The polyvinylidene fluoride (PVDF) nanofiber has widely investigated as a sensor and transducer material, because of its high piezo and Ferro electric properties. The novel nano structure of PVDF has attracted considerable interest in the bio sensing and biomedical application. This paper deals with PVDF Tactile sensor. Basically The PVDF acts as piezoelectric effect which convert load into electrical signals. The tactile sensor has a main role for visual handicap and robotics. Any physical activities of robotic in all industrial the tactile sensor is a crucible role, whether it can left the object or handling glass parts pressure of object is main. The Sandwich type PVDF base tactile sensor has been fabricated using nanofiber. Using electro spinning method, the PVDF based nanofiber coated over coper the electrodes. In normal, the PVDF has α-phase and while applying electric pulse the PVDF polymer would be changed from α-phase into β-phase. Only in β-phase, the PVDF act as piezo electrics sensor and measure the piezoelectricity simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezo resistance of the material. The enhancement of PVDF properties has been carried by using SEM. The SEM image result showed that the size of nanofiber, the size of nanofiber is varied in the range of (180 nm-400 nm) with smooth surface. The X-Ray diffraction has shown that the PVDF was aggregated with the β-phase crystalline nature. Due to β-phase it was act as a piezo electric prosperity’s and its results are very high sensitivity.


Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


2020 ◽  
pp. 1-1
Author(s):  
Shipeng Xie ◽  
Yuanfei Zhang ◽  
Minghe Jin ◽  
Chongyang Li ◽  
Qingyuan Meng

2021 ◽  
pp. 2100428
Author(s):  
Taehoon Lee ◽  
Yunsung Kang ◽  
Kwanhun Kim ◽  
Sangjun Sim ◽  
Kyubin Bae ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 730 ◽  
Author(s):  
Xiaozhou Lü ◽  
Liang Qi ◽  
Hanlun Hu ◽  
Xiaoping Li ◽  
Guanghui Bai ◽  
...  

Flexible tactile sensor can be integrated into artificial skin and applied in industrial robot and biomedical engineering. However, the presented tactile sensors still have challenge in increasing sensitivity to expand the sensor’s application. Aiming at this problem, this paper presents an ultra-sensitive flexible tactile sensor. The sensor is based on piezoresistive effect of graphene film and is composed of upper substrate (PDMS bump with a size of 5 mm × 7 mm and a thickness of 1 mm), medial Graphene/PET film (Graphene/PET film with a size of 5 mm × 7 mm, PET with a hardness of 2H) and lower substrate (PI with fabricated electrodes). We presented the structure and reduced the principle of the sensor. We also fabricated several sample devices of the sensor and carried out experiment to test the performance. The results show that the sensor performed an ultra high sensitivity of 10.80/kPa at the range of 0–4 kPa and have a large measurement range up to 600 kPa. The sensor has 4 orders of magnitude between minimum resolution and maximum measurement range which have great advantage compared with state of the art. The sensor is expected to have great application prospect in robot and biomedical.


2008 ◽  
Vol 33-37 ◽  
pp. 931-936 ◽  
Author(s):  
Chieh Tang Chuang ◽  
Rong Shun Chen

This paper presents a high sensitivity micro capacitive tactile sensor that can detect normal forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes and it can reach the aim of large sensing range. High sensitivity is achieved by using the high aspect ratio comb electrodes with narrow comb gaps and large overlap areas. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is analyzed, and the finite element analysis of mechanical behavior of the structures is performed.


Sign in / Sign up

Export Citation Format

Share Document