Iron Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications

2004 ◽  
Vol 75 (1) ◽  
pp. 55-61 ◽  
Author(s):  
André Schneider ◽  
Gerhard Sauthoff
Author(s):  
Richard A. Michi ◽  
Alex Plotkowski ◽  
Amit Shyam ◽  
Ryan R. Dehoff ◽  
Sudarsanam Suresh Babu

2013 ◽  
Vol 765 ◽  
pp. 8-12 ◽  
Author(s):  
Yang Yang Fan ◽  
Makhlouf M. Makhlouf

Most traditional aluminium casting alloys are based on the aluminium-silicon eutectic system because of its excellent casting characteristics. However, the solidus in this system does not exceed 577 °C and the major alloying elements used with silicon in these alloys have high diffusivity in aluminium. Therefore, while these elements enhance the room temperature strength of the alloy, they are not useful at elevated temperatures. Considering nickel-base superalloys, whose mechanical properties are retained up to temperatures that approach 75% of their melting point, it is conceivable that castable aluminium alloys can be developed on the same basis so that they are useful at temperatures approaching 300 °C. In this publication, we present the thought process behind developing a new castable aluminum alloy that is designed specifically for such high temperature applications and we present the alloy’s measured castability characteristics and its elevated temperature tensile properties.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000025-000033 ◽  
Author(s):  
Christian Ehrhardt ◽  
Matthias Hutter ◽  
Hermann Oppermann ◽  
Klaus-Dieter Lang

The study focuses on a new variant of transient liquid phase soldering (TLPS) using tin based solder with copper powder. This technology may act as an alternative for lead free joining of semiconductor dies in power electronic applications at high operating temperature. Lead-free joining technologies currently used like gold-rich solders and silver sintering are well suited for high temperature applications. However, due to the high metal price they have a limited acceptance. Using a special soldering process it is feasible to produce an almost void-less solder joint, using a paste of tin-based solder powder (e.g. SAC305), copper powder and a solvent which is hardly activated. The resulting interconnection is characterized by an almost complete transformation into intermetallic phases of Cu6Sn5 and Cu3Sn. Thus the melting point of the transformed interconnect can be increased up to the decomposition temperature of the Cu6Sn5 intermetallic phase which is 415 °C. A two-step soldering process allows to eliminating the typical skeleton structure that forms as a result of the immediate reaction of the liquid tin-based solder with the higher melted copper powder to form the Cu6Sn5 and Cu3Sn intermetallic phases. An alternative way compared to the two-step-process is also explained in this study: Capillary forces let the solder flow into the gap filled with Cu spheres.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1978 ◽  
Vol 27 (6) ◽  

Abstract THERMALLOY 63W is a cast nickel-chromium-tungsten-iron alloy produced for service at temperature up to 1900 F. Centrifugally cast reformer tubes comprise one of its high-temperature applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-352. Producer or source: Abex Corporation, Engineered Products Division.


2010 ◽  
Vol 25 (11) ◽  
pp. 1169-1174 ◽  
Author(s):  
Xiang-Ping JIANG ◽  
Qing YANG ◽  
Chao CHEN ◽  
Na TU ◽  
Zu-Deng YU ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 384
Author(s):  
Andong Du ◽  
Anders E. W. Jarfors ◽  
Jinchuan Zheng ◽  
Kaikun Wang ◽  
Gegang Yu

The effect of lanthanum (La)+cerium (Ce) addition on the high-temperature strength of an aluminum (Al)–silicon (Si)–copper (Cu)–magnesium (Mg)–iron (Fe)–manganese (Mn) alloy was investigated. A great number of plate-like intermetallics, Al11(Ce, La)3- and blocky α-Al15(Fe, Mn)3Si2-precipitates, were observed. The results showed that the high-temperature mechanical properties depended strongly on the amount and morphology of the intermetallic phases formed. The precipitated tiny Al11(Ce, La)3 and α-Al15(Fe, Mn)3Si2 both contributed to the high-temperature mechanical properties, especially at 300 °C and 400 °C. The formation of coarse plate-like Al11(Ce, La)3, at the highest (Ce-La) additions, reduced the mechanical properties at (≤300) ℃ and improved the properties at 400 ℃. Analysis of the strengthening mechanisms revealed that the load-bearing mechanism was the main contributing mechanism with no contribution from thermal-expansion mismatch effects. Strain hardening had a minor contribution to the tensile strength at high-temperature.


Sign in / Sign up

Export Citation Format

Share Document