Incremental dynamic analysis of high-rise towers

2009 ◽  
Vol 19 (8) ◽  
pp. 922-934 ◽  
Author(s):  
Behrouz Asgarian ◽  
Mahmood Yahyai ◽  
M. Mirtaheri ◽  
Hamid Rahmani Samani ◽  
Pejman Alanjari
2020 ◽  
Vol 194 ◽  
pp. 01005
Author(s):  
Weiwei Sun ◽  
Dina D’Ayala ◽  
Jinxing Fu ◽  
Wentao Gu ◽  
Jun Feng

This paper investigates the seismic performance of a high-rise molten-salt solar tower by finite element modelling. The integrated and separated models for solar tower based on the concrete damage plastic model are validated by matching the behaviour of similar reinforced concrete chimney specimens. The modal analysis demonstrates the first four modes of the solar tower are translational vibration. Seismic simulations are developed through the incremental dynamic analysis. The most disadvantageous position of the tower is all concentrated in the opening section under multidirectional seismic excitations. The top displacement of the tower under bidirectional and three-directional earthquake actions is larger than that under unidirectional earthquake actions. The results of the seismic vulnerability assessment show that when the PGA equals to 0.035g, the tower will be intact; when the PGA equals to 0.1g (design peak ground acceleration), the probability of the moderate damage state is within 1.5%; when the PGA equals to 0.22g (maximum considered earthquake), the probability of the destruction state is below 0.7%. The seismic partitioned fragility analysis of the tower under multidirectional earthquake excitations illustrates that there are two peaks in the vulnerability surfaces. The anti-collapse analysis indicates the tower has a good seismic performance under multidirectional seismic excitations.


2021 ◽  
Author(s):  
Sahman Soleimani ◽  
Abdolreza Sarvghad Moghadam ◽  
Armin Aziminejad

Abstract Bidirectional energy-based pushover (BEP) procedure is expanded in this paper to predict approximate incremental dynamic analysis (IDA) results of medium- and high-rise structures. BEP is a unique approach in the sense that it provides approximate IDA curves under the simultaneous effect of two horizontal components of ground motions and is applicable to both symmetric- and asymmetric-plan buildings. The method has already proved to be useful in low-rise buildings, and this study aims to evaluate its suitability for mid- and high-rise structures. Six structural models were considered in this evaluation in two groups of 9- and 20-story buildings, with each group consisting of a symmetric, a one-way asymmetric, and a two-way asymmetric-plan building. The results revealed that the method was sufficiently accurate to provide approximate IDA curves for all structural models. The method had similar accuracy in the asymmetric models as it did in the symmetric models, although the accuracy slightly decreased as the height of the building increased. BEP also provided good estimates of the demands in both ‘flexible’ and ‘stiff sides’ of the asymmetric buildings as well as the demands over the height of the buildings.


2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2018 ◽  
Vol 22 (5) ◽  
pp. 1106-1120
Author(s):  
Zhi Zheng ◽  
Changhai Zhai ◽  
Xu Bao ◽  
Xiaolan Pan

This study serves to estimate the seismic capacity of the reinforced concrete containment building considering its bidirectional cyclic effect and variations of energy. The implementation of the capacity estimation has been performed by extending two well-known methods: nonlinear static pushover and incremental dynamic analysis. The displacement and dissipated energy demands are obtained from the static pushover analysis considering bidirectional cyclic effect. In total, 18 bidirectional earthquake intensity parameters are developed to perform the incremental dynamic analysis for the reinforced concrete containment building. Results show that the bidirectional static pushover analysis tends to decrease the capacity of the reinforced concrete containment building in comparison with unidirectional static pushover analysis. The 5% damped first-mode geometric mean spectral acceleration strongly correlates with the maximum top displacement of the containment building. The comparison of the incremental dynamic analysis and static pushover curves is employed to determine the seismic capacity of the reinforced concrete containment building. It is concluded that bidirectional static pushover and incremental dynamic analysis studies can be used in performance evaluation and capacity estimation of reinforced concrete containment buildings under bidirectional earthquake excitations.


Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


2017 ◽  
Vol 738 ◽  
pp. 120-129
Author(s):  
Olga Ivankova ◽  
Marian Stellmach ◽  
Lenka Konecna

This paper deals with static and dynamic analysis of asymmetric high-rise building. Two alternatives have been analysed – without dilatation and with dilatation. Then, the influence of the dilatation was discussed. The building was located in 4th seismic area in Slovakia (Bratislava). The description of the building, applied load, considered soil-structure interaction, created calculating models, used analysis and obtained results are mentioned here. The conclusions and the photos of defective repairs of real structures are depicted at the end of the paper.


2018 ◽  
Vol 104 ◽  
pp. 236-249 ◽  
Author(s):  
Hamid Masaeli ◽  
Faramarz Khoshnoudian ◽  
Saman Musician

Sign in / Sign up

Export Citation Format

Share Document