scholarly journals Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation

2014 ◽  
Vol 11 (2) ◽  
pp. 519-530 ◽  
Author(s):  
M. Sonnaert ◽  
I. Papantoniou ◽  
V. Bloemen ◽  
G. Kerckhofs ◽  
F. P. Luyten ◽  
...  

2009 ◽  
Author(s):  
Ki Taek Lim ◽  
Pill Hoon Choung ◽  
Jang Ho Kim ◽  
Hyun Mok Son ◽  
Hoon Seonwoo ◽  
...  




2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17558-e17558
Author(s):  
Alba Martínez ◽  
Molly Buckley ◽  
Joel Berry ◽  
Rebecca Christian Arend

e17558 Background: Epithelial Ovarian Cancer (EOC) is the most common cause of death among gynecological malignancies. This is a result of the high rate of recurrence and chemo-resistance in EOC patients. Therefore, the development of new therapeutics is crucial. A major factor contributing to this is the lack of therapeutic candidates is lack of translational accuracy in preclinical models. Recently, 3-dimensional (3-D) models have aided in accurately recreating tumor biology. We have developed an EOC 3-D perfused bioreactor system that recapitulates EOC tumor biology and incorporates tumor biomechanical regulation. This model allows for us to more accurately predict the clinical response of new drug candidates, which aids in elimination of ineffective candidates prior to clinical trials. Methods: EOC cell lines (luciferase-taggedSKOV-3 and OVCAR-8) were embedded in a relevant extracellular matrix (ECM) and injected into a perfused, polydimethylsiloxane (PDMS) bioreactor. Microchannels were embedded in matrigel so that the cell culture media with or without chemotherapy could flow through the perfused PDMS to provide nutrient delivery and gas exchange enhancing viability and function of surrounding cells. The bioreactors were connected to a peristaltic pump that allowed for the cell culture media to perfuse over a 7-day period. We monitored cell viability using bioluminescence imaging (BLI), immunohistochemistry (IHC), and lactate dehydrogenase (LDH) release in media. Results: BLI showed a linear increase in SKOV-3 and OVCAR-8 cell growth over 7 days. These results were confirmed by IHC measuring the number of nucleated cells per micron2. Graphical representation of the region of interest (ROI) showed a high correlation between IHC staining of nucleated cells and BLI score. IHC analysis of PAX8 staining was positive and proved that the perfusion bioreactor system maintains EOC biology over time. In addition, our results suggest that the bioreactor is a suitable model for drug preclinical testing in both cell lines as well as in patients’ samples. Conclusions: Our preliminary results using the 3D EOC perfused, PDMS bioreactor model showed increased EOC cell growth overtime, while maintaining original EOC histology. Moreover, our results suggest that this model could provide a novel platform to study therapeutic interventions in EOC. Our ultimate goal is to implement ovarian cancer microenvironment components (e.g. immune cells) into bioreactor system to study different drug treatments to better determine drug candidate’s translational efficacy.



2013 ◽  
Vol 41 (9) ◽  
pp. 1979-1989 ◽  
Author(s):  
Stefanos E. Diamantouros ◽  
Luis G. Hurtado-Aguilar ◽  
Thomas Schmitz-Rode ◽  
Petra Mela ◽  
Stefan Jockenhoevel


2016 ◽  
Vol 57 (14) ◽  
pp. 6134 ◽  
Author(s):  
Min He ◽  
Thomas Storr-Paulsen ◽  
Annie L. Wang ◽  
Chiara E. Ghezzi ◽  
Siran Wang ◽  
...  


Hepatology ◽  
2009 ◽  
Vol 49 (5) ◽  
pp. 1625-1635 ◽  
Author(s):  
Noémi K. M. Van Hul ◽  
Jorge Abarca-Quinones ◽  
Christine Sempoux ◽  
Yves Horsmans ◽  
Isabelle A. Leclercq


2015 ◽  
Vol 10 (11) ◽  
pp. 1727-1738 ◽  
Author(s):  
Claudia Kleinhans ◽  
Ramkumar Ramani Mohan ◽  
Gabriele Vacun ◽  
Thomas Schwarz ◽  
Barbara Haller ◽  
...  


2018 ◽  
Vol 24 (10) ◽  
pp. 585-595 ◽  
Author(s):  
Jakob Schmid ◽  
Sascha Schwarz ◽  
Robert Meier-Staude ◽  
Stefanie Sudhop ◽  
Hauke Clausen-Schaumann ◽  
...  


2020 ◽  
Vol 74 (3) ◽  
pp. 187-196
Author(s):  
Jasmina Stojkovska ◽  
Jovana Zvicer ◽  
Milena Milivojevic ◽  
Isidora Petrovic ◽  
Milena Stevanovic ◽  
...  

Development of drugs is a complex, time- and cost-consuming process due to the lack of standardized and reliable characterization techniques and models. Traditionally, drug screening is based on in vitro analysis using two-dimensional (2D) cell cultures followed by in vivo animal testing. Unfortunately, application of the obtained results to humans in about 90 % of cases fails. Therefore, it is important to develop and improve cell-based systems that can mimic the in vivo-like conditions to provide more reliable results. In this paper, we present development and validation of a novel, user-friendly perfusion bioreactor system for single use aimed for cancer research, drug screening, anti-cancer drug response studies, biomaterial characterization, and tissue engineering. Simple design of the perfusion bioreactor provides direct medium flow at physiological velocities (100?250 ?m s-1) through samples of different sizes and shapes. Biocompatibility of the bioreactor was confirmed in short term cultivation studies of cervical carcinoma SiHa cells immobilized in alginate microfibers under continuous medium flow. The results have shown preserved cell viability indicating that the perfusion bioreactor in conjunction with alginate hydrogels as cell carriers could be potentially used as a tool for controlled anti-cancer drug screening in a 3D environment.



Sign in / Sign up

Export Citation Format

Share Document