Anin vitropriming step increases the expression of numerous epidermal growth and migration mediators in a tissue-engineering construct

2014 ◽  
Vol 11 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Xiaofeng Lin ◽  
Taehee Kwak ◽  
David Fiore ◽  
Paul J. Thompson ◽  
Jane K. Goodrich ◽  
...  
Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Borja Sanz ◽  
Ane Albillos Sanchez ◽  
Bonnie Tangey ◽  
Kerry Gilmore ◽  
Zhilian Yue ◽  
...  

Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 879
Author(s):  
Anton Manakhov ◽  
Elizaveta Permyakova ◽  
Sergey Ershov ◽  
Svetlana Miroshnichenko ◽  
Mariya Pykhtina ◽  
...  

The immobilization of viable proteins is an important step in engineering efficient scaffolds for regenerative medicine. For example, angiogenin, a vascular growth factor, can be considered a neurotrophic factor, influencing the neurogenesis, viability, and migration of neurons. Angiogenin shows an exceptional combination of angiogenic, neurotrophic, neuroprotective, antibacterial, and antioxidant activities. Therefore, this protein is a promising molecule that can be immobilized on carriers used for tissue engineering, particularly for diseases that are complicated by neurotrophic and vascular disorders. Another highly important and viable protein is apoliprotein A1. Nevertheless, the immobilization of these proteins onto promising biodegradable nanofibers has not been tested before. In this work, we carefully studied the immobilization of human recombinant angiogenin and apoliprotein A1 onto plasma-coated nanofibers. We developed a new methodology for the quantification of the protein density of these proteins using X-ray photoelectron spectroscopy (XPS) and modeled the XPS data for angiogenin and apoliprotein A1 (Apo-A1). These findings were also confirmed by the analysis of immobilized Apo-A1 using fluorescent microscopy. The presented methodology was validated by the analysis of fibronectin on the surface of plasma-coated poly(ε-caprolactone) (PCL) nanofibers. This methodology can be expanded for other proteins and it should help to quantify the density of proteins on surfaces using routine XPS data treatment.


2011 ◽  
Vol 175-176 ◽  
pp. 220-223 ◽  
Author(s):  
Ai Jun Hu ◽  
Bao Qi Zuo ◽  
Feng Zhang ◽  
Qing Lan ◽  
Huan Xiang Zhang

Schwann cells (SCs) are primary structural and functional cells in peripheral nervous system and play a crucial role in peripheral nerve regeneration. Current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps and assist Scs in directing the growth of regenerating axons in nerve injury recovery. Electrospun silk fibroin nanofibers, fabricated for the cell culture in vitro, can provide such experiment support. Silk fibroin scaffolds (SFS) were fabricated with formic acid (FA), and the average fiber diameter was 305 ± 24 nm. The data from microscopic, immunohistochemical and scanning electron micrograph confirmed that the scaffold was beneficial to the adherence, proliferation and migration of SCs without exerting any significant cytotoxic effects on their phenotype. Thus, providing an experimental foundation accelerated the formation of bands of Bünger to enhance nerve regeneration. 305 nm SFS could be a candidate material for nerve tissue engineering.


Author(s):  
Valerie M. Merkle ◽  
Marcus Hutchinson ◽  
Phat L. Tran ◽  
Jawaad Sheriff ◽  
Danny Bluestein ◽  
...  

A biocompatible scaffold is vital to implant device design, tissue engineering, and drug delivery. Previous work has shown smooth muscle cell and human umbilical vascular endothelial cell viability, adhesion, proliferation, and migration on coaxially electrospun scaffolds. For vascular applications, these electrospun scaffolds need to be non-thrombogenic, while simultaneously not completely inhibiting the platelets role in hemostasis and augmenting angiogenesis.[1] Therefore, platelet activity on electrospun scaffolds needs to be assessed. In this study, we fabricated coaxial electrospun nanofibers in both 1:1 and 3:1 (gelatin:polyvinyl alcohol, volumetric flow ratios), as well as scaffolds composed of either gelatin or polyvinyl alcohol (PVA). Platelet deposition on the electrospun scaffolds was measured. Furthermore, the activity of human platelets on the electrospun scaffolds was assessed using a modified prothrombinase assay.[2]


Sign in / Sign up

Export Citation Format

Share Document