Methods to measure Dust Production and Deposition Rates in Buildings

1999 ◽  
Vol 72 (4) ◽  
pp. 329-340 ◽  
Author(s):  
Yong Cheng Chen ◽  
E.M. Barber ◽  
Yunahui Zhang ◽  
R.W. Besant ◽  
S. Sokhansanj
2016 ◽  
Vol 28 (2) ◽  
pp. 99-133 ◽  
Author(s):  
Arnab Dasgupta ◽  
D.K. Chandraker ◽  
S. P. Walker ◽  
P. K. Vijayan

Author(s):  
Michael DiBattista ◽  
Kimball Skinner ◽  
Rick Kneedler ◽  
Leonid Vasilvey ◽  
Lukas Drybcak ◽  
...  

Abstract Circuit edit and failure analysis require tungsten deposition parameters to accomplish different goals. Circuit edit applications desire low resistivity values for rewiring, while failure analysis requires high deposition rates for capping layers. Tungsten deposition can be a well controlled process for a variety of beam parameters. For circuit edit, tungsten resistivity approaching below 150 µohm-cm and 50 μm3/nC is predicted. Material deposition rates of 80 μm3/nC can be achieved with reasonable pattern accuracy using defocus as a parameter.


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


2021 ◽  
Vol 11 (4) ◽  
pp. 1827
Author(s):  
Gaetano Settimo ◽  
Maria Eleonora Soggiu ◽  
Marco Inglessis ◽  
Giovanni Marsili ◽  
Pasquale Avino

In recent years, studies on climate change have focused on reducing greenhouse gas emissions emitted by various civil and industrial processes. This study highlights the importance of characterizing the total deposition rates of airborne particles (bulk atmospheric deposition) in the surroundings of an industrial area along the north cost of the Lazio Region in Italy, to deepen knowledge about the potential impact of emissions from the coal-fired thermoelectric (CTE) power plant and other possible sources existing in the surrounding area. Four sampling sites were identified, and the monitoring plan was performed a yearlong with monthly collecting observation. The deposition samples were collected monthly and processed for determining organic (polychlorinated dibenzo-para-dioxins, PCDDs; polychlorinated dibenzofurans, PCDFs; dioxin-like polychlorinated biphenyls, DL-PCBs; polycyclic aromatic hydrocarbons, PAHs) and inorganic (metals) substances. The samples were collected monthly and sent for chemical characterization. In Europe and Italy, no reference values have been given for the deposition rates of chemicals, while some European countries have determined reference/guide values to which the authors will refer in this study. Therefore, the analytical results show that the deposition rates for PCDD/Fs and DL-PCBs are lower with respects guide values defined by Germany and Belgium; PAHs values are in line with those measured in other rural-type sites, while for metals the analytical results show a situation between rural and urban area. The approach used in this study can help to identify reference values for Italy in deposition rates, with the aim both to characterize the dynamic of pollution in area with multiple risk factors and to describe and protect human health from environmental exposures caused by the contamination of the food chain.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
J. Doehler ◽  
R. Kopf ◽  
...  

AbstractUsing a Gas Jet thin film deposition technique, microcrystalline silicon (μc-Si) materials were prepared at rates as high as 15-20 Å/s. The technique involves the use of a gas jet flow that is subjected to a high intensity microwave source. The quality of the material has been optimized through the variation of a number of deposition conditions including the substrate temperature, the gas flows, and the applied microwave power. The best films were made using deposition rates near 16 Å/s. These materials have been used as i-layers for red light absorbing, nip single-junction solar cells. Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked currents as high as 10 mA/cm2 and 2.2-2.3% red-light pre-light soaked peak power outputs have been obtained for cells with i-layer thicknesses near 1 micron. This compares with currents of 10-11 mA/cm2 and 4% initial red-light peak power outputs obtained for high efficiency amorphous silicon germanium alloy (a-SiGe:H) devices. The AM1.5 white light efficiencies for these microcrystalline cells are 5.9-6.0%. While the efficiencies for the a-SiGe:H cells degrade by 15-20% after long term light exposure, the efficiencies for the microcrystalline cells before and after prolonged light exposure are similar, within measurement error. Considering these results, the Gas Jet deposition method is a promising technique for the deposition of μc-Si solar cells due to the ability to achieve reasonable stable efficiencies for cells at i-layer deposition rates (16 Å/s) which make large-scale production economically feasible.


Sign in / Sign up

Export Citation Format

Share Document