On the Theory and Computation of Surface Tension: The Elimination of Parasitic Currents through Energy Conservation in the Second-Gradient Method

2002 ◽  
Vol 182 (1) ◽  
pp. 262-276 ◽  
Author(s):  
Didier Jamet ◽  
David Torres ◽  
J.U. Brackbill
Author(s):  
Jesu´s Castro ◽  
Assensi Oliva ◽  
Eduardo Garci´a-Rivera

A comparative study has been carried out between different models of implementing surface tension for PLIC-VOF methods: i) the well known Continuum Surface Force (CSF); ii) Staggered Grid Interface Pressure (SGIP); iii) Modified Meier’s. As main difference with respect the CSF model, the two last use information of the interface location for the calculation of the surface tension forces, therefore, they need a model of interface reconstruction. The models will be tested under static and dynamic conditions, for the case of a drop and bubble between water and air. In order to reduce the ‘parasitic’ currents that is characteristic of this type of models, two different strategies are used: i) a new method for the calculation of the interface curvature based on the use of polar coordinates; ii) the use of kernels for smoothing the jump of the colour function and the interface. Additionally, the influence of the order of accuracy of the reconstruction algorithms employed that affect the curvature estimation and the surface tension force calculation is also checked. After testing the different cases, it can be concluded that SGIP and modified Meier perform in a comparable way, and much better than CSF model without kernel, that is only competitive with the use of the kernels. However, modified Meier is preferred respect SGIP due to its straitghforward implementation on unstructured meshes.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Sign in / Sign up

Export Citation Format

Share Document