Self-Healing Corrosion-Protective Sol–Gel Coatings Based on Extrinsic and Intrinsic Healing Approaches

Author(s):  
M. AbdolahZadeh ◽  
S. van der Zwaag ◽  
S. J. Garcia
Keyword(s):  
Sol Gel ◽  
2014 ◽  
Vol 61 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Mansoureh Parsa ◽  
Seyed Mohammad Ali Hosseini ◽  
Zahra Hassani ◽  
Effat Jamalizadeh

Purpose – The purpose of this paper was to study the corrosion resistance of water-based sol-gel coatings containing titania nanoparticles doped with organic inhibitors for corrosion protection of AA2024 alloy. Design/methodology/approach – The coatings were obtained using tetraethylorthosilicate, 3-glycidoxypropyltrimethoxysilane, titanium (IV) tetrapropoxide and poly(ethylene imine) polymer as cross-linking agents. As corrosions inhibitors, 2-mercaptobenzoxazole and salicylaldoxime were incorporated into the sol-gel for the improvement of the corrosion resistance. The corrosion protection performance of coatings was studied using the potentiodynamic scan and the electrochemical impedance spectroscopy (EIS) methods. Atomic force microscopy was used to investigate surface morphology of the coatings. Findings – The results indicated that doping the sol-gel coatings with inhibitors leads to improvement of the corrosion protection. The comparison of doped coatings confirmed that corrosion protection performance of the sol-gel coatings doped with 2-mercaptobenzoxazole was better than for the sol-gel coatings doped with salicylaldoxime. Also the EIS results verified self-healing effects for the sol-gel coatings doped with 2-mercaptobenzoxazole. Originality/value – This paper indicates 2-mercaptobenzoxazole and salicylaldoxime can be added as corrosion inhibitors to sol-gel coatings to improve their corrosion protective properties for AA2024 alloy.


RSC Advances ◽  
2016 ◽  
Vol 6 (108) ◽  
pp. 106964-106979 ◽  
Author(s):  
Kunal Wazarkar ◽  
Deepak Patil ◽  
Ajay Rane ◽  
Dinesh Balgude ◽  
Mukesh Kathalewar ◽  
...  

The protection of metal from corrosion is of great interest for which various methods have been implemented in the past such as organic–inorganic protective coatings, use of corrosion inhibitors, sol–gel coatings, self healing coatingsetc.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5382
Author(s):  
Guillaume Lollivier ◽  
Marie Gressier ◽  
Florence Ansart ◽  
Maëlenn Aufray ◽  
Marie-Joëlle Menu

Self-healing polymers are a new class of material that has recently received a lot of attention because of the lifespan improvement it could bring to multiple applications. One of the major challenges is to obtain multifunctional materials which can self-heal and exhibit other interesting properties such as protection against corrosion. In this paper, the effect of the incorporation of an aminosilane on the properties of a self-healing organic polymer containing disulfide bond is studied on films and coatings for aluminium AA2024-T3 using simple one step in situ synthesis. Hybrid coatings with enhanced anticorrosion properties measured by EIS were obtained thanks to the formation of a protective oxide interface layer, while exhibiting wound closure after exposition at 75 °C. The thermal, mechanical and rheological properties of the films with different aminosilane amounts were characterized in order to understand the influence of the slight presence of the inorganic network. Stiffer and reprocessable hybrid films were obtained, capable to recover their mechanical properties after healing. The nanocomposite structure, confirmed by TEM, had a positive effect on the self-healing and stress relaxation properties. These results highlight the potential of sol-gel chemistry to obtain efficient anticorrosion and self-healing coatings.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tinghua Li ◽  
Chongjian Dong ◽  
Yupeng Liu ◽  
Jun Wu ◽  
Xia Zhang ◽  
...  

Superhydrophobic and oleophobic surfaces have attracted increasing attention because of their self-cleaning properties. A composite coating composed of anodized titanium and sol-gel (TiAO/SG) was developed and has good superhydrophobic and oleophobic property. The anodized titanium coating was prepared on the titanium substrate and then a sol-gel layer was coated on the surface of the anodized titanium layer to obtain a composite coating with superhydrophobic and oleophobic properties. The adhesion weight of glycerol on the surface of the superhydrophobic titanium wire decreased to 4.8% of that of untreated titanium wire, which showed that the material had good oleophobic property. This new composite coating could achieve self-healing superhydrophobicity by releasing loaded perfluorodenytriethoxysilane to the surface of the coating. Given its superhydrophobicity, self-healing and wear resistance, the TiAO/SG coating was expected to achieve healable self-cleaning protection in titanium devices.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 490 ◽  
Author(s):  
Haifeng Zhao ◽  
Heng An ◽  
Baozhong Xi ◽  
Yan Yang ◽  
Jianglei Qin ◽  
...  

Self-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM-stat-DAA) with a pendant ketone group was synthesized from easy accessible monomers, and thermo-responsive self-healing hydrogels were prepared through a series of diacylhydrazide compounds cross-linking without any additional stimulus. Although the copolymers do not show thermo-response, the hydrogels became thermo-responsive andboth the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) varied with the composition of the copolymer and structure of cross-linkers. With a dynamic covalent bond connection, the hydrogel showed gel-sol-gel transition triggered by acidity, redox, and ketone to acylhydrazide group ratios. This is another interesting cross-linking induced thermo-responsive (CIT) hydrogel with different properties compared to PNIPAM-based thermo-responsive hydrogels. The self-healing hydrogel with CIT properties could have great potential for application in areas related to bioscience, life simulation, and temperature switching.


2009 ◽  
Vol 54 (28) ◽  
pp. 7207-7213 ◽  
Author(s):  
S.M.A. Hosseini ◽  
A.H. Jafari ◽  
E. Jamalizadeh

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 409 ◽  
Author(s):  
Luigi Calabrese ◽  
Edoardo Proverbio

Research activity concerning nanoporous zeolites has grown considerably in recent decades. The structural porosity of zeolites provides versatile functional properties such as molecular selectivity, ion and molecule storage capacity, high surface area, and pore volume which combined with excellent thermal and chemical stability can extend its application fields in several industrial sectors. In such a context, anti-corrosion zeolite coatings are an emerging technology able to offer a reliable high performing and environmental friendly alternative to conventional chromate-based protective coatings. In this article, a focused overview on anti-corrosion performances of sol-gel composite zeolite coatings is provided. The topic of this review is addressed to assess the barrier and self-healing properties of composite zeolite coating. Based on results available in the literature, a property–structure relationship of this class of composites is proposed summarizing, furthermore, the competing anti-corrosion active and passive protective mechanisms involved during coating degradation. Eventually, a brief summary and a future trend evaluation is also reported.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Akshya Kumar Guin ◽  
Suryakanta Nayak ◽  
Manish Kumar Bhadu ◽  
Veena Singh ◽  
Tapan Kumar Rout

Polymer based nanocapsule was developed using core-cell approach, where the core material was methyl diphenyl diisocyanate and the cell material was urea-formaldehyde. The synthesized capsules of 100 to 800 nm size were incorporated into sol-gel matrix to prepare a final coating for steel protection. This coating was found protecting the steel at the damage or crack locations in 3.5% NaCl solution. SEM micrographs confirmed healing of the coating at the damage or crack points.


2013 ◽  
Vol 1 ◽  
pp. 1-18 ◽  
Author(s):  
M. Abdolah Zadeh ◽  
S. van der Zwaag ◽  
S.J. Garcia
Keyword(s):  
Sol Gel ◽  

Sign in / Sign up

Export Citation Format

Share Document