Integration of Life Cycle Assessments in the decision-making process for environmental protection measures and remedial action at active and abandoned mining sites

2005 ◽  
pp. 601-608
Author(s):  
Stefan Wörlen ◽  
Stephan Kistinger ◽  
Guido Deissmann
Author(s):  
Jerry Schneider ◽  
Jeffrey Wagner ◽  
Judy Connell

In the mid-1980s, the impact of three decades of uranium processing near rural Fernald, Ohio, 18 miles northwest of Cincinnati, became the centre of national public controversy. When a series of incidents at the uranium foundry brought to light the years of contamination to the environment and surrounding farmland communities, local citizens’ groups united and demanded a role in determining the plans for cleaning up the site. One citizens’ group, Fernald Residents for Environmental Safety and Health (FRESH), formed in 1984 following reports that nearly 300 pounds of enriched uranium oxide had been released from a dust-collector system, and three off-property wells south of the site were contaminated with uranium. For 22 years, FRESH monitored activities at Fernald and participated in the decision-making process with management and regulators. The job of FRESH ended on 19 January this year when the U.S. Secretary of Energy Samuel Bodman and U.S. Environmental Protection Agency Administrator Stephen Johnson — flanked by local, state, and national elected officials, and citizen-led environmental watchdog groups including FRESH — officially declared the Fernald Site clean of all nuclear contamination and open to public access. It marked the end of a remarkable turnaround in public confidence and trust that had attracted critical reports from around the world: the Cincinnati Enquirer; U.S. national news programs 60 Minutes, 20/20, Nightline, and 48 Hours; worldwide media outlets from the British Broadcasting Company and Canadian Broadcasting Company; Japanese newspapers; and German reporters. When personnel from Fluor arrived in 1992, the management team thought it understood the issues and concerns of each stakeholder group, and was determined to implement the decommissioning scope of work aggressively, confident that stakeholders would agree with its plans. This approach resulted in strained relationships with opinion leaders during the early months of Fluor’s contract. To forge better relationships, the U.S. Department of Energy (DOE) who owns the site, and Fluor embarked on three new strategies based on engaging citizens and interested stakeholder groups in the decision-making process. The first strategy was opening communication channels with site leadership, technical staff, and regulators. This strategy combined a strong public-information program with two-way communications between management and the community, soliciting and encouraging stakeholder participation early in the decision-making process. Fluor’s public-participation strategy exceeded the “check-the-box” approach common within the nuclear-weapons complex, and set a national standard that stands alone today. The second stakeholder-engagement strategy sprang from mending fences with the regulators and the community. The approach for dispositioning low-level waste was a 25-year plan to ship it off the site. Working with stakeholders, DOE and Fluor were able to convince the community to accept a plan to safely store waste permanently on site, which would save 15 years of cleanup and millions of dollars in cost. The third strategy addressed the potentially long delays in finalizing remedial action plans due to formal public comment periods and State and Federal regulatory approvals. Working closely with the U.S. and Ohio Environmental Protection Agencies (EPA) and other stakeholders, DOE and Fluor were able to secure approvals of five Records of Decision on time – a first for the DOE complex. Developing open and honest relationships with union leaders, the workforce, regulators and community groups played a major role in DOE and Fluor cleaning up and closing the site. Using lessons learned at Fernald, DOE was able to resolve challenges at other sites, including worker transition, labour disputes, and damaged relationships with regulators and the community. It took significant time early in the project to convince the workforce that their future lay in cleanup, not in holding out hope for production to resume. It took more time to repair relationships with Ohio regulators and the local community. Developing these relationships over the years required constant, open communications between site decision makers and stakeholders to identify issues and to overcome potential barriers. Fluor’s open public-participation strategy resulted in stakeholder consensus of five remedial-action plans that directed Fernald cleanup. This strategy included establishing a public-participation program that emphasized a shared-decision making process and abandoned the government’s traditional, non-participatory “Decide, Announce, Defend” approach. Fernald’s program became a model within the DOE complex for effective public participation. Fluor led the formation of the first DOE site-specific advisory board dedicated to remediation and closure. The board was successful at building consensus on critical issues affecting long-term site remediation, such as cleanup levels, waste disposal and final land use. Fluor created innovative public outreach tools, such as “Cleanopoly,” based on the Monopoly game, to help illustrate complex concepts, including risk levels, remediation techniques, and associated costs. These innovative tools helped DOE and Fluor gain stakeholder consensus on all cleanup plans. To commemorate the outstanding commitment of Fernald stakeholders to this massive environmental-restoration project, Fluor donated $20,000 to build the Weapons to Wetlands Grove overlooking the former 136-acre production area. The grove contains 24 trees, each dedicated to “[a] leader(s) behind the Fernald cleanup.” Over the years, Fluor, through the Fluor Foundation, also invested in educational and humanitarian projects, contributing nearly $2 million to communities in southwestern Ohio, Kentucky and Indiana. Further, to help offset the economic impact of the site’s closing to the community, DOE and Fluor promoted economic development in the region by donating excess equipment and property to local schools and townships. This paper discusses the details of the public-involvement program — from inception through maturity — and presents some lessons learned that can be applied to other similar projects.


2009 ◽  
pp. 1-10
Author(s):  
Albert Boonstra ◽  
Bert de Brock

The past few years, many organizations have been using the Internet in quite arbitrary and experimental ways. This phase, which can be considered as a period of learning and experimentation, has created a need for a more systematic approach to the identification, the ordering and the assessment of e-business options. It is the objective of this paper to address this need by presenting a methodology that aims at supporting management in using alternative e-business applications in the first stage of the decision-making process. Figure 1 shows how a systematic decision-making process can be organized by using e-business options. The steps are based on Simon’s intelligence, design, and choice trichotomy (Simon, 1960). First, alternative e-business options have to be identified and ordered. Then the possible options have to be assessed and selected. After this stage the selected opportunities have to be specified and designed. Next, implementation, operation, maintenance, and evaluation may follow. In Figure 1 this is called the “formal life cycle”. We will apply the word “e-business option” referring to the possibility to use an electronic network for a business purpose. An e-business opportunity is defined here as an assessed and selected e-business option. In practice, different intermediate feedback activities, interrupts, delays and adjustments are often necessary to reconsider earlier steps (Mintzberg, Raisinghani, & Théorêt, 1976). This is—among other reasons—because decision-making processes of this kind take place in dynamic environments and decisions are made in political contexts (Pettigrew, 2002). Moreover, participants in decision-making processes are often lacking the necessary information to make well-considered decisions right from the start (Miller, Hickson, & Wilson, 1996). In Figure 1 these activities are called “intermediate feedback”.


Energy ◽  
2011 ◽  
Vol 36 (5) ◽  
pp. 3022-3029 ◽  
Author(s):  
Wen-Hsien Tsai ◽  
Sin-Jin Lin ◽  
Jau-Yang Liu ◽  
Wan-Rung Lin ◽  
Kuen-Chang Lee

2005 ◽  
Vol 895 ◽  
Author(s):  
Marc Binder ◽  
Harald Florin ◽  
Johannes Kreissig

AbstractThis presentation will illustrate how to expand the view by considering the total life cycle in an efficient way into the decision making process and why it is important to do so. The business case will show, how the ecological and economic aspects considering the total life cycle of different design options have been considered when determining the preferable design options out of an holistic point of view. Life Cycle Engineering (LCE)/ Life Cycle Assessment (LCA) integrated in the design Process LCE methodology is evaluating ecological, technical and economic aspects considering the total life cycle of processes/products. LCA studies are the basis for the ecological evaluation within LCE. LCE studies are based on material and energy flow information needed while running the facilities or for producing products. LCE is a simulation tool show optimization potentials as well as supporting the decision making process within the design phase. As various databases hold information on ecological impacts of material- and energy production and information on the economic values is available within the involved companies, time consuming research on basic materials and energies is not necessary. Therefore first estimations on scenarios can be made within days to support the decision process not causing any time delay. LCE studies can be conducted within the design process and on existing facilities/products. If LCE is used within the design process optimization potentials can be shown in early stages of the design phase of facilities/products. Integration of LCE within early stages of the design ensures an efficient way of improving the ecological profile of processes and products and reducing the overall costs considering the total life cycle. Realization within a software tool The software tool GaBi4 is developed and designed to support LCE efficiently and in a transparent way. The design of the facilities can be modeled according to the material and energy flow. This enables the user to run scenario analysis for different design options based on the process flow model. Business case The methodology of LCE has been integrated into the design process of the new rear axle paint shop focusing on the handling of the overspray. Different design options have been analyzed and arguments were made explicit to support the decision making process. As LCE was part of the whole design process from the beginning, the effort for all participants could have been minimized. Conclusions The case study has shown that the integration of LCE into the design process provides additional information and is not causing any delay of the decision making process. LCE enables a transparent presentation of the economics and ecological impacts on a process bases. Optimization potentials, ecological and economic, can be shown at all stages of the design phase and result in reducing the overall costs and environmental burdens caused by the paint process.


Author(s):  
V.N. Pavlysh ◽  
◽  
E. Kazakova ◽  

The methodology for determining the procedure for environmental protection on the basis of a matrix representation of the conditions of the problem and the application of mathematical methods of information processing is substantiated. An algorithm is proposed for establishing the procedure for environmental protection during the closure of coal mines with limited funding. When mines are closed, environmental legislation provides for the implementation of a number of important technical measures ensuring the preservation of the environment in the zone of influence of the enterprise. A method is proposed that is based on determining the degree of risk of each environmental hazard factor, which allows one to “rank” environmental measures according to their “rank”. The main aspects of the negative environmental impact of densely populated mining regions are identified. The degree of environmental risk, from the point of view of using it to establish the frequency of environmental protection measures, is a criterial factor, determined on the basis of collegial decision-making by all interested participants in the process. The numerical characteristics that form the basis for decision making are determined. To assess the degree of environmental risk, the data of expert assessments are presented in the form of a matrix, which allows us to formalize the decision-making process on the frequency of environmental protection measures. In the process of forming a matrix of expert rating estimates, all indicators that determine the degree of environmental risk are taken into account. Moreover, among the indicators there are those that have a physical nature and are measured by physical quantities, and those that have a logical essence and are characterized as “yes” or “no”


Author(s):  
Jana Korytárová ◽  
Barbora Pospíšilová

Investment decisions are at the core of any development strategy. Economic growth and welfare depend on productive capital, infrastructure, human capital, knowledge, total factor productivity and the quality of institutions. Decision-making process on the selection of suitable projects in the public sector is in some aspects more difficult than in the private sector. Evaluating projects on the basis of their financial profitability, where the basic parameter is the value of the potential profit, can be misleading in these cases. One of the basic objectives of the allocation of public resources is respecting of the 3E principle (Economy, Effectiveness, Efficiency) in their whole life cycle. The life cycle of the investment projects consists of four main phases. The first pre-investment phase is very important for decision-making process whether to accept or reject a public project for its realization. A well-designed feasibility study as well as cost-benefit analysis (CBA) in this phase are important assumptions for future success of the project. A future financial and economical CF which represent the fundamental basis for calculation of economic effectiveness indicators are formed and modelled in these documents. This paper deals with the possibility to calculate the financial and economic efficiency of the public investment projects more accurately by simulation methods used.


Sign in / Sign up

Export Citation Format

Share Document