Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)

Author(s):  
E. V. Yakushev ◽  
E. I. Debolskaya ◽  
I. S. Kuznetsov ◽  
A. Staalstrøm
Keyword(s):  
Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


1979 ◽  
Vol 14 (1) ◽  
pp. 71-88
Author(s):  
S.E. Penttinen ◽  
P.H. Bouthillier ◽  
S.E. Hrudey

Abstract Studies on the chronic low dissolved oxygen problems encountered under winter ice in the Red Deer River have generally been unable to account for dissolved oxygen depletion in terms of known manmade inputs. An experimental program was developed to assess the possible nature and approximate bounds of oxygen demand due to natural organic runoff carried to the Red Deer River by a small tributary stream, the Blindman River. The study employed an electrolytic respirometer on stream water samples subjected to prior concentration by vacuum evaporation. Evaluation of carbon and nitrogen budgets in conjunction with the measured oxygen demand indicate that biochemical oxygen demand is originating with natural organic runoff in tributaries of the Red Deer River. The results provide a basis for estimation of the possible contribution to the observed oxygen demand in the Red Deer River originating from natural organic runoff.


1987 ◽  
Vol 19 (9) ◽  
pp. 155-174
Author(s):  
Henk L. F. Saeijs

The Delta Project is in its final stage. In 1974 it was subjected to political reconsideration, but it is scheduled now for completion in 1987. The final touches are being put to the storm-surge barrier and two compartment dams that divide the Oosterschelde into three areas: one tidal, one with reduced tide, and one a freshwater lake. Compartmentalization will result in 13% of channels, 45% of intertidal flats and 59% of salt marshes being lost. There is a net gain of 7% of shallow-water areas. Human interventions with large scale impacts are not new in the Oosterschelde but the large scale and short time in which these interventions are taking place are, as is the creation of a controlled tidal system. This article focusses on the area with reduced tide and compares resent day and expected characteristics. In this reduced tidal part salt marshes will extend by 30–70%; intertidal flats will erode to a lower level and at their edges, and the area of shallow water will increase by 47%. Biomass production on the intertidal flats will decrease, with consequences for crustaceans, fishes and birds. The maximum number of waders counted on one day and the number of ‘bird-days' will decrease drastically, with negative effects for the wader populations of western Europe. The net area with a hard substratum in the reduced tidal part has more than doubled. Channels will become shallower. Detritus import will not change significantly. Stratification and oxygen depletion will be rare and local. The operation of the storm-surge barrier and the closure strategy chosen are very important for the ecosystem. Two optional closure strategies can be followed without any additional environmental consequences. It was essential to determine a clearly defined plan of action for the whole area, and to make land-use choices from the outset. How this was done is briefly described.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1132 ◽  
Author(s):  
Rejane M. P. da Silva ◽  
Javier Izquierdo ◽  
Mariana X. Milagre ◽  
Abenchara M. Betancor-Abreu ◽  
Isolda Costa ◽  
...  

Amperometric and potentiometric probes were employed for the detection and characterization of reactive sites on the 2098-T351 Al-alloy (AA2098-T351) using scanning electrochemical microscopy (SECM). Firstly, the probe of concept was performed on a model Mg-Al galvanic pair system using SECM in the amperometric and potentiometric operation modes, in order to address the responsiveness of the probes for the characterization of this galvanic pair system. Next, these sensing probes were employed to characterize the 2098-T351 alloy surface immersed in a saline aqueous solution at ambient temperature. The distribution of reactive sites and the local pH changes associated with severe localized corrosion (SLC) on the alloy surface were imaged and subsequently studied. Higher hydrogen evolution, lower oxygen depletion and acidification occurred at the SLC sites developed on the 2098-T351 Al-alloy.


Author(s):  
Seremak Wioletta ◽  
Baszczuk Agnieszka ◽  
Jasiorski Marek ◽  
Gibas Anna ◽  
Winnicki Marcin

AbstractThis work shows that the titanium dioxide coatings obtained by low-pressure cold gas spraying with the use of the sol–gel amorphous TiO2 powder are characterized by photocatalytic activity despite their partial amorphous content. Moreover, the research outcome suggests that the decomposition rate of organic pollutants is enhanced after long-term exposure to moisture. The condensation humidity test is not detrimental to the continuity and integrity of the coating, but the phase composition of coatings changes—with the exposure to water vapor, the portion of the amorphous phase crystallizes into brookite. The mechanism responsible for the conversion of amorphous TiO2 into brookite is attributed to the water-driven dissolution and reprecipitation of TiO6 octahedra. It has been shown that an additional parameter necessary for the stabilization of the brookite is the oxygen depletion of the amorphous structure of titanium dioxide. Considering the results presented in this paper and the advantages of a portable, low-pressure cold spray system for industrial applications, it is expected that TiO2 coatings produced from a sol–gel feedstock powder can be further developed and tested as efficient photocatalysts.


2021 ◽  
pp. 102613
Author(s):  
Grant C. Pitcher ◽  
Arturo Aguirre-Velarde ◽  
Denise Breitburg ◽  
Jorge Cardich ◽  
Jacob Carstensen ◽  
...  
Keyword(s):  

1950 ◽  
Vol 40 (3) ◽  
pp. 227-232 ◽  
Author(s):  
E. M. Crook ◽  
D. J. Watson

The CO2 concentration in the atmosphere of a potato clamp varied between 0·06 and 0·86%. The sum of CO2 and oxygen concentrations remained approximately constant at 21%. The CO2 concentration increased with time from December to April. This was attributed to increase in the rate of respiration of the potatoes caused by rise of temperature. Wind blowing in the direction normal to the face of the clamp reduced the COa concentration, presumably by causing external air to flow through the clamp coverings. A multiple regression of CO2 concentration on temperature of the potatoes at the time of sampling, and on the mean component of wind velocity normal to the clamp face estimated over a period of 3 hr. before the time of sampling, accounted for 64% of the variance between sampling occasions.Unsaturated compounds were detected in the clamp atmosphere by absorption in bromine; the concentration of these, expressed as ethylene, varied between 0·004 and 0·025%.The magnitude of CO2 accumulation and oxygen depletion in the clamp atmosphere was too small to produce effects of practical importance on the storage behaviour of the potatoes. If the unsaturated compounds were ethylene, the concentration present was sufficient to cause appreciable retardation of sprouting.


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1767-1774 ◽  
Author(s):  
V. N. MIKHEEV ◽  
A. F. PASTERNAK ◽  
E. T. VALTONEN

SUMMARYWe tested the hypothesis that host specificity in ectoparasites does not depend exclusively on the features of the host but also on surrounding habitats, using 2 fish ectoparasites, Argulus coregoni and A. foliaceus (Crustacea: Branchiura), occurring sympatrically in Finnish lakes. Although these parasites are considered to be of low specificity, we found that the larger of the 2 species, A. coregoni developed a pronounced preference for salmonid hosts at the beginning of maturation (defined by the presence of copulating specimens). Argulus foliaceus infects a much wider range of fish hosts. We showed that specialization of A. coregoni on salmonids does not necessarily result from incompatibility with other fishes, but could instead reflect higher sensitivity of oxygen depletion compared with A. foliaceus. Adult A. coregoni may meet these demands by attaching to salmonids, the typical inhabitants of well-aerated waters. Young parasites of both species showed little host specificity and attached mainly to fishes with higher body reflectivity. In host choice experiments, A. coregoni of 4–5 mm length preferred salmonids (rainbow trout) to cyprinids (roach) irrespective of the type of fish host, on which it had been previously grown in the laboratory. We suggest that such an innate ontogenetic shift in host preference maintains the major part of the parasite population on its principal host, ensuring successful reproduction within suitable habitats.


Sign in / Sign up

Export Citation Format

Share Document