scholarly journals A Dual Lentiviral Reporter for Autophagy Flux Assessment

Author(s):  
Rainer Will ◽  
Katja Bauer ◽  
Matthias Kudla ◽  
Jetsy Montero-Vergara ◽  
Stefan Wiemann ◽  
...  
Keyword(s):  
2021 ◽  
Vol 542 ◽  
pp. 17-23
Author(s):  
Emi Aonuma ◽  
Akiko Tamura ◽  
Hiroki Matsuda ◽  
Takehito Asakawa ◽  
Yuriko Sakamaki ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


Autophagy ◽  
2021 ◽  
Author(s):  
Pupu Ge ◽  
Zehui Lei ◽  
Yang Yu ◽  
Zhe Lu ◽  
Lihua Qiang ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7232
Author(s):  
Gloria Lazzeri ◽  
Carla L. Busceti ◽  
Francesca Biagioni ◽  
Cinzia Fabrizi ◽  
Gabriele Morucci ◽  
...  

Norepinephrine (NE) neurons and extracellular NE exert some protective effects against a variety of insults, including methamphetamine (Meth)-induced cell damage. The intimate mechanism of protection remains difficult to be analyzed in vivo. In fact, this may occur directly on target neurons or as the indirect consequence of NE-induced alterations in the activity of trans-synaptic loops. Therefore, to elude neuronal networks, which may contribute to these effects in vivo, the present study investigates whether NE still protects when directly applied to Meth-treated PC12 cells. Meth was selected based on its detrimental effects along various specific brain areas. The study shows that NE directly protects in vitro against Meth-induced cell damage. The present study indicates that such an effect fully depends on the activation of plasma membrane β2-adrenergic receptors (ARs). Evidence indicates that β2-ARs activation restores autophagy, which is impaired by Meth administration. This occurs via restoration of the autophagy flux and, as assessed by ultrastructural morphometry, by preventing the dissipation of microtubule-associated protein 1 light chain 3 (LC3) from autophagy vacuoles to the cytosol, which is produced instead during Meth toxicity. These findings may have an impact in a variety of degenerative conditions characterized by NE deficiency along with autophagy impairment.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1138
Author(s):  
Zhe Zhang ◽  
Jiayan Shi ◽  
Edouard C. Nice ◽  
Canhua Huang ◽  
Zheng Shi

Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.


2017 ◽  
Vol 152 (5) ◽  
pp. S856
Author(s):  
Kelly A. Whelan ◽  
Bridget C. Godwin ◽  
Benjamin J. Wilkins ◽  
Prasanna Chandramouleeswaran ◽  
Medha Sharma ◽  
...  

2018 ◽  
Vol 455 (1-2) ◽  
pp. 127-134 ◽  
Author(s):  
Huaping Zhang ◽  
Xiaorong Yang ◽  
Xuefen Pang ◽  
Zhenxiang Zhao ◽  
Haixia Yu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shivapriya Shivakumar ◽  
Trailokyanath Panigrahi ◽  
Rohit Shetty ◽  
Murali Subramani ◽  
Arkasubhra Ghosh ◽  
...  

Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (anin-vitromodel for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.


2013 ◽  
Vol 454 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Qiuli Liang ◽  
Gloria A. Benavides ◽  
Athanassios Vassilopoulos ◽  
David Gius ◽  
Victor Darley-Usmar ◽  
...  

Sirt3 (sirtuin 3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival, but the role of Sirt3 is unclear. To examine this, we used Sirt3-KO (knockout) mouse embryonic fibroblast cells, and found that, under basal conditions, Sirt3-KO cells exhibited increased autophagy flux compared with WT (wild-type) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP-linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR (mammalian target of rapamycin) and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity, and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK (c-Jun N-terminal kinase) and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3-KO cells did not affect LC3-I (light chain 3-I) and LC3-II levels, indicating that Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3-KO cells compared with WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine exacerbated cell death in both WT and Sirt3-KO cells, and by 3-methyadenine exacerbated cell death in Sirt3-KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics.


Sign in / Sign up

Export Citation Format

Share Document