Classification of Urban Areas: Inferring Land Use from the Interpretation of Land Cover

Author(s):  
Victor Mesev
Keyword(s):  
Land Use ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 1600 ◽  
Author(s):  
Flávio F. Camargo ◽  
Edson E. Sano ◽  
Cláudia M. Almeida ◽  
José C. Mura ◽  
Tati Almeida

This study proposes a workflow for land use and land cover (LULC) classification of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images of the Brazilian tropical savanna (Cerrado) biome. The following LULC classes were considered: forestlands; shrublands; grasslands; reforestations; croplands; pasturelands; bare soils/straws; urban areas; and water reservoirs. The proposed approach combines polarimetric attributes, image segmentation, and machine-learning procedures. A set of 125 attributes was generated using polarimetric ALOS-2/PALSAR-2 images, including the van Zyl, Freeman–Durden, Yamaguchi, and Cloude–Pottier target decomposition components, incoherent polarimetric parameters (biomass indices and polarization ratios), and HH-, HV-, VH-, and VV-polarized amplitude images. These attributes were classified using the Naive Bayes (NB), DT J48 (DT = decision tree), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) algorithms. The RF, MLP, and SVM classifiers presented the most accurate performances. NB and DT J48 classifiers showed a lower performance in relation to the RF, MLP, and SVM. The DT J48 classifier was the most suitable algorithm for discriminating urban areas and natural vegetation cover. The proposed workflow can be replicated for other SAR images with different acquisition modes or for other types of vegetation domains.


Author(s):  
Jukka Heikkonen ◽  
Aristide Varfis

This paper proposes a method for remote sensing based land cover/land use classification of urban areas. The method consists of the following four main stages: feature extraction, feature coding, feature selection and classification. In the feature extraction stage, statistical, textural and Gabor features are computed within local image windows of different sizes and orientations to provide a wide variety of potential features for the classification. Then the features are encoded and normalized by means of the Self-Organizing Map algorithm. For feature selection a CART (Classification and Regression Trees) based algorithm was developed to select a subset of features for each class within the classification scheme at hand. The selected subset of features is not attached to any specific classifier. Any classifier capable of representing possible skewed and multi-modal feature distributions can be employed, such as multi-layer perceptron (MLP) or k-nearest neighbor (k-NN). The paper reports experiments in land cover/land use classification with the Landsat TM and ERS-1 SAR images gathered over the city of Lisbon to show the potentials of the proposed method.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


2011 ◽  
Vol 50 (9) ◽  
pp. 1872-1883 ◽  
Author(s):  
Winston T. L. Chow ◽  
Bohumil M. Svoma

AbstractUrbanization affects near-surface climates by increasing city temperatures relative to rural temperatures [i.e., the urban heat island (UHI) effect]. This effect is usually measured as the relative temperature difference between urban areas and a rural location. Use of this measure is potentially problematic, however, mainly because of unclear “rural” definitions across different cities. An alternative metric is proposed—surface temperature cooling/warming rates—that directly measures how variations in land-use and land cover (LULC) affect temperatures for a specific urban area. In this study, the impact of local-scale (<1 km2), historical LULC change was examined on near-surface nocturnal meteorological station temperatures sited within metropolitan Phoenix, Arizona, for 1) urban versus rural areas, 2) areas that underwent rural-to-urban transition over a 20-yr period, and 3) different seasons. Temperature data were analyzed during ideal synoptic conditions of clear and calm weather that do not inhibit surface cooling and that also qualified with respect to measured near-surface wind impacts. Results indicated that 1) urban areas generally observed lower cooling-rate magnitudes than did rural areas, 2) urbanization significantly reduced cooling rates over time, and 3) mean cooling-rate magnitudes were typically larger in summer than in winter. Significant variations in mean nocturnal urban wind speeds were also observed over time, suggesting a possible UHI-induced circulation system that may have influenced local-scale station cooling rates.


Sign in / Sign up

Export Citation Format

Share Document