Genetic Relatedness Among the Different Genetic Lineages of Pseudomonas syringae pv. phaseolicola

Author(s):  
M. E. Führer ◽  
L. Navarro de la Fuente ◽  
L. Rivas ◽  
J. L. Hernandez-Flores ◽  
R. Garcidueñas-Piña ◽  
...  
2012 ◽  
Vol 78 (9) ◽  
pp. 3266-3279 ◽  
Author(s):  
S. Gironde ◽  
C. Manceau

ABSTRACTPseudomonas syringaepv. maculicola causes bacterial spot onBrassicaceaeworldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France.P. syringaepv. maculicola resemblesP. syringaepv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains ofP. syringaeto characterize the relationships betweenP. syringaepv. maculicola and related pathovars, paying special attention toP. syringaepv. tomato. Phylogenetic analysis ofgyrBandrpoDgene sequences showed thatP. syringaepv. maculicola, which causes diseases inBrassicaceae, forms six genetic lineages within genomospecies 3 ofP. syringaestrains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[Pt 2]:469–478, 1999), whereasP. syringaepv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained withrpoDandgyrBsequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused byP. syringaepv. maculicola andP. syringaepv. tomato. The two pathovars had distinct host ranges; onlyP. syringaepv. maculicola strains were pathogenic forBrassicaceae. A subpopulation ofP. syringaepv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lackavrPto1andavrPtoBor to contain a disruptedavrPtoBhomolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs toP. syringaepv. maculicola. This study shows thatP. syringaepv. maculicola andP. syringaepv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestralP. syringaegenomospecies 3, and suggests that pathovar specificity withinP. syringaemay be due to independent genetic events.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2464
Author(s):  
Félix Morán ◽  
Ester Marco-Noales ◽  
Elena Landeras ◽  
Montserrat Roselló ◽  
Adela Abelleira ◽  
...  

Currently, kiwifruit cultivation arouses great economic interest in the agricultural sector in several countries of the European Union due to high consumer demand and good results achieved in terms of production potential and fruit quality. One of the main bacterial species that cause yield losses in kiwifruit plants is Pseudomonas syringae. Diseases such as bacterial canker, caused by pathovar (pv.) actinidiae; floral bud necrosis caused by pv. syringae and leaf spots caused by pv. actinidifoliorum (Pfm) are clear examples. Between 2014 and 2017, in the main kiwifruit producing areas in the north and east of Spain, several surveys were carried out in search of these pathogens. Analyses realized from symptomatic and asymptomatic plants of Actinidiadeliciosa revealed the existence of new bacterial isolates close to Pfm. These new isolates werelow virulence pathogens similar to Pfm but belonging to a new group of P. syringae that affected the leaves of A. chinensis var. deliciosa. This study focused on the characterization and classification of these new isolates by a polyphasic approach in order to provide more information for understanding how the different populations of P.syringae affecting kiwifruit. They had the phenotypic characteristics of Pfm but by molecular approaches, they constituted a supported genetic lineage closely-related to Pfm independent of the five lineages described so far. This work revealed the great diversity found in P. syringae species affecting kiwifruit plants and supports the hypothesis that Pfm is a low virulence pathogen which is long established in Europe.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 473-482 ◽  
Author(s):  
José A. Oguiza ◽  
Arantza Rico ◽  
Luis A. Rivas ◽  
Laurent Sutra ◽  
Alan Vivian ◽  
...  

The bean (Phaseolus spp.) plant pathogen Pseudomonas syringae pv. phaseolicola is characterized by the ability to produce phaseolotoxin (Tox+). We recently reported that the majority of the Spanish P. syringae pv. phaseolicola population is unable to synthesize this toxin (Tox−). These Tox− isolates appear to lack the entire DNA region for the biosynthesis of phaseolotoxin (argK-tox gene cluster), as shown by PCR amplification and DNA hybridization using DNA sequences specific for separated genes of this cluster. Tox+ and Tox− isolates also showed genomic divergence that included differences in ERIC-PCR and arbitrarily primed-PCR profiles. Tox+ isolates showed distinct patterns of IS801 genomic insertions and contained a chromosomal IS801 insertion that was absent from Tox− isolates. Using a heteroduplex mobility assay, sequence differences were observed only among the intergenic transcribed spacer of the five rDNA operons of the Tox− isolates. The techniques used allowed the unequivocal differentiation of isolates of P. syringae pv. phaseolicola from the closely related soybean (Glycine max) pathogen, P. syringae pv. glycinea. Finally, a pathogenicity island that is essential for the pathogenicity of P. syringae pv. phaseolicola on beans appears to be conserved among Tox+, but not among Tox− isolates, which also lacked the characteristic large plasmid that carries this pathogenicity island. It is proposed that the results presented here justify the separation of the Tox+ and Tox− P. syringae pv. phaseolicola isolates into two distinct genetic lineages, designated Pph1 and Pph2, respectively, that show relevant genomic differences that include the pathogenicity gene complement.


1998 ◽  
Vol 64 (4) ◽  
pp. 1180-1187 ◽  
Author(s):  
Agathe Clerc ◽  
Charles Manceau ◽  
Xavier Nesme

ABSTRACT Recently, DNA pairing analyses showed that Pseudomonas syringae pv. tomato and related pathovars, includingP. syringae pv. maculicola, form a genomic species (Pseudomonas tomato) (L. Gardan, H. L. Shafik, and P. A. D. Grimont, p. 445–448, in K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian, and J. von Kietzell, ed., Pseudomonas syringae Pathovars and Related Pathogens, 1997). The genetic diversity of 23 strains belonging to this genomic species and 4 outgroup strains was analyzed with randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphic (AFLP) techniques. Simple boiling of P. syringae cells was suitable for subsequent DNA amplification to obtain reliable patterns in RAPD and AFLP analyses. In general, the grouping of P. syringae strains by both analysis techniques corresponded well with the classification obtained from an RFLP analysis of ribosomal DNA operons, DNA pairing studies, and an analysis of pathogenicity data. However, two strains of P. syringaepv. maculicola produced distinct DNA patterns compared to the DNA patterns of other P. syringae pv. maculicola strains; these patterns led us to assume that horizontal transfer of DNA could occur between bacterial populations. Both techniques used in this study have high discriminating power because strains of P. syringaepv. tomato and P. syringae pv. maculicola which were indistinguishable by other techniques, including pathogenicity tests on tomato, were separated into two groups by both RAPD and AFLP analyses. In addition, data analysis showed that the AFLP method was more efficient for assessing intrapathovar diversity than RAPD analysis and allowed clear delineation between intraspecific and interspecific genetic distances, suggesting that it could be an alternative to DNA pairing studies. However, it was not possible to distinguish the two races of P. syringae pv. tomato on the basis of an analysis of the data provided by either the AFLP or RAPD technique.


Author(s):  
D.A. Palmer ◽  
C.L. Bender

Coronatine is a non-host-specific phytotoxin produced by several members of the Pseudomonas syringae group of pathovars. The toxin acts as a virulence factor in P. syringae pv. tomato, allowing the organism to multiply to a higher population density and develop larger lesions than mutant strains unable to produce the toxin. The most prominent symptom observed in leaf tissue treated with coronatine is an intense spreading chlorosis; this has been attributed to a loss of chlorophylls a and b in tobacco. Coronatine's effects on membrane integrity and cell ultrastructure have not been previously investigated. The present study describes changes in tomato leaves in response to treatment with purified coronatine, infection by a coronatine-producing strain of P. syringae pv. tomato, and infection by a cor" mutant.In contrast to H2O-treated tissue, coronatine-treated tissue showed a diffuse chlorosis extending approximately 5 mm from the inoculation site. Leaf thickness, cell number, and cell dimensions were similar for both healthy and coronatine-treated, chlorotic tissue; however, the epidermal cell walls were consistently thicker in coronatine-treated leaves (Figs, la and lb).


Tick-borne encephalitis virus (TBEV) exists in natural foci, which are areas where TBEV is circulating among its vectors (ticks of different species and genera) and reservoir hosts (usually rodents and small mammals). Based on phylogenetic studies, four TBEV subtypes (Far-Eastern, Siberian, European, Baikalian) and two putative subtypes (Himalayan and “178-79” group) are known. Within each subtype, some genetic lineages are described. The European subtype (TBEV-EU) (formerly known also as the “Western subtype”) of TBEV is prevalent in Europe, but it was also isolated in Western and Eastern Siberia in Russia and South Korea. The Far-Eastern subtype (TBEV-FE) was preferably found in the territory of the far-eastern part of Eurasia, but some strains were isolated in other regions of Eurasia. The Siberian (TBEV-SIB) subtype is the most common and has been found in almost all TBEV habitat areas. The Baikalian subtype is prevalent around Lake Baikal and was isolated several times from ticks and rodents. In addition to the four TBEV subtypes, one single isolate of TBEV (178-79) and two genetic sequences (Himalayan) supposed to be new TBEV subtypes were described in Eastern Siberia and China. The data on TBEV seroprevalence in humans and animals can serve as an indication for the presence or absence of TBEV in studied area.


2014 ◽  
Vol 1 (1) ◽  
pp. 68-71
Author(s):  
A. Gerilovych ◽  
B. Stegniy ◽  
A. Stegniy ◽  
M. Stegniy ◽  
K. Smietanka ◽  
...  

Objective. To research the molecular characteristics of two HPAI strains – A/Ch/Syvash/02/05/H5N1 and A/Ch/Krasnogvardeysk/58/08/H5N1, which were identifi ed as representatives of the highly pathogenic H5N1 viruses. Methods. RNA extraction, real-time polymerase chain reaction (PCR). Results. The phylogenetic studies revealed that the above mentioned strains belong to two various genetic lineages originated from the Eastern European strains isolated in 2005, but differ from the viruses introduced to the Central and Western Europe in 2005/2006, and also the lineages consisting of H5N1 viruses isolated in the Europe and Middle East in late 2007. Conclusions. Relying on experimental studies, it can be concluded that the strains of A/Ch/Syvash/02/05/H5N1 and A/Ch/Krasnogvardeysk/58/08/H5N1 are highly pathogenic.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document