Quasilinear Heat Equations with Absorption. The Critical Exponent

Author(s):  
Victor A. Galaktionov ◽  
Juan Luis Vázquez
Author(s):  
Victor A. Galaktionov

We consider the Cauchy problem for the quasilinear heat equationwhere σ > 0 is a fixed constant, with the critical exponent in the source term β = βc = σ + 1 + 2/N. It is well-known that if β ∈(1,βc) then any non-negative weak solution u(x, t)≢0 blows up in a finite time. For the semilinear heat equation (HE) with σ = 0, the above result was proved by H. Fujita [4].In the present paper we prove that u ≢ 0 blows up in the critical case β = σ + 1 + 2/N with σ > 0. A similar result is valid for the equation with gradient-dependent diffusivitywith σ > 0, and the critical exponent β = σ + 1 + (σ + 2)/N.


2013 ◽  
Vol 41 (3) ◽  
pp. 174-195 ◽  
Author(s):  
Anuwat Suwannachit ◽  
Udo Nackenhorst

ABSTRACT A new computational technique for the thermomechanical analysis of tires in stationary rolling contact is suggested. Different from the existing approaches, the proposed method uses the constitutive description of tire rubber components, such as large deformations, viscous hysteresis, dynamic stiffening, internal heating, and temperature dependency. A thermoviscoelastic constitutive model, which incorporates all the mentioned effects and their numerical aspects, is presented. An isentropic operator-split algorithm, which ensures numerical stability, was chosen for solving the coupled mechanical and energy balance equations. For the stationary rolling-contact analysis, the constitutive model presented and the operator-split algorithm are embedded into the Arbitrary Lagrangian Eulerian (ALE)–relative kinematic framework. The flow of material particles and their inelastic history within the spatially fixed mesh is described by using the recently developed numerical technique based on the Time Discontinuous Galerkin (TDG) method. For the efficient numerical solutions, a three-phase, staggered scheme is introduced. First, the nonlinear, mechanical subproblem is solved using inelastic constitutive equations. Next, deformations are transferred to the subsequent thermal phase for the solution of the heat equations concerning the internal dissipation as a source term. In the third step, the history of each material particle, i.e., each internal variable, is transported through the fixed mesh corresponding to the convective velocities. Finally, some numerical tests with an inelastic rubber wheel and a car tire model are presented.


2012 ◽  
Vol 38 (3) ◽  
pp. 469-472 ◽  
Author(s):  
Jian LI ◽  
Yun-Gang LIU

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Irena Lasiecka ◽  
Buddhika Priyasad ◽  
Roberto Triggiani

Abstract We consider the 𝑑-dimensional Boussinesq system defined on a sufficiently smooth bounded domain and subject to a pair { v , u } \{v,\boldsymbol{u}\} of controls localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . Here, 𝑣 is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrarily small connected portion Γ ~ \widetilde{\Gamma} of the boundary Γ = ∂ ⁡ Ω \Gamma=\partial\Omega . Instead, 𝒖 is a 𝑑-dimensional internal control for the fluid equation acting on an arbitrarily small collar 𝜔 supported by Γ ~ \widetilde{\Gamma} . The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite-dimensional feedback control pair { v , u } \{v,\boldsymbol{u}\} localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} . In addition, they will be minimal in number and of reduced dimension; more precisely, 𝒖 will be of dimension ( d - 1 ) (d-1) , to include necessarily its 𝑑-th component, and 𝑣 will be of dimension 1. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to L 3 ⁢ ( Ω ) \boldsymbol{L}^{3}(\Omega) for d = 3 d=3 ) and a corresponding Besov space for the thermal component, q > d q>d . Unique continuation inverse theorems for suitably over-determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80s.


2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2020 ◽  
Vol 53 (2) ◽  
pp. 7503-7508
Author(s):  
A. Schaum ◽  
P. Feketa ◽  
T. Meurer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document