Soil Biology: Decomposition and Soil Acidity

Author(s):  
Sigmund Hågvar
Keyword(s):  
1970 ◽  
Vol 5 (3) ◽  
pp. 328-339
Author(s):  
Nofriyanto Pakolo ◽  
Mariani Sembiring ◽  
Abdul Rauf

Andisol soil erupted ash sinabung has a thickness level, where each thickness has microbial activity and nutrient status of soil who different. This study aims to determine the potential of phosphate solubilization microorganisms on soil erupted ash sinabung. This research was conducted at Soil Biology Laboratory of Faculty of Agriculture USU, which the isolation of microorganisms is fungi and bacteria from the soil erupted Sinabung in some ash thickness to get the isolates to be tested the potential solubility. Isolate tested for their solubility potential in two ways: solid pikovskaya medium with source of phosphate Ca3(PO4)2, AlPO4, FePO4, and RP (Rock Phosphate) and in Andisol soil incubation with microbial dose as much as 1 ml. The result showed that there were 6 isolates of fungi (J1-J6) and 6 bacterial isolates (B1-B6) and the provision of phosphate solubilization microorganisms on Andisol soil has different potential in increasing microbial population, soil respiration, P-total soil, P-available soil, but can decrease C-organic soil with soil acidity degree (pH) and each type of MPF isolate tested will be able to dissolve P-not available to be P-available on solid pikovskaya medium with source of phosphate Ca3(PO4)2, AlPO4, FePO4 and Rock Phosphate but have different capabilities


Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


Author(s):  
V. N. Suleimanova ◽  
N. Yu. Egorova

The object of our research was one of the most common orchids in the world – Cypripedium calceolus L. As a rare species, it is listed in the Red book of the Russian Federation (3 category of rarity) [8], the Kirov region (3 category of rarity) [9], as well as in the Red books of 59 regions of the Russian Federation [2]. Limiting factors in the Kirov region are the violation of habitats as a result of anthropogenic impacts – deforestation, recreation, collection for bouquets, digging, reducing the number of species. Studies on the study of C. calceolus in the Kirov region are isolated [10–12]. The purpose of this work is to identify phytocenotic parameters and environmental conditions of C. calceolus habitats within the southern taiga fragment of the range. Studies of ecological and cenotic conditions of C. calceolus habitats were conducted in southern taiga forest ecosystems within the Kirov region (Slobodskaya, Afanasyevsky districts) (See table 1) in the period from 2012 to 2019. The studied habitats of C. calceolus are confined to non-morally-boreal-small-grass and grass spruce forests (Melico nutantis-Piceetum abietis subass. typicum, Maianthemo-Piceetum subass. typicum var. typical) (See fig. 1), pine trees with fir and spruce of various grasses (Melico nutantis-Pinetum sylvestris var. Lathyrus vernus). The growth of C. calceolus on the technogenically disturbed substrate of an old spent limestone quarry overgrown with coniferous rocks and various grasses was also noted. All the studied biotopes are characterized by a large constancy of non-moral species with not significant coverage of mosses. The stand of spruce forest types is dominated by Picea abies, pine-Pinus sylvestris. Abies sibirica occurs as an impurity. The undergrowth layer has a diverse species composition: Sorbus aucuparia, Frangula alnus, Lonicera xylosteum, Yuniperus communis, Daphne mezereum. In this tier of most studied phytocenoses there is a Atragene sibirica. The grass-shrub layer is also very diverse, which determines the high specificity of these communities. In addition to species of boreal small grass (Maianthemum bifolium, Orthilia secunda, Luzula pilosa, Rubus saxatilis), the presence of non – morals is characteristic-Lathyrus vernus, Melica nutans, Stellaria holostea, Asarum europaeum. Moss-lichen layer is fragmentary (covering up to 45 %), Pleurozium schreberi and Hylocomium splendens act as sodominants. Phyto-indication of the studied C. calceolus habitats according to ten ecological scales of D. N. Tsyganov (See table 2, Fig. 2) showed that in relation to the complex of all environmental factors, the studied species is mesovalent (MV) (It total = 0.54) and has an average level of lability in relation to the studied environmental factors. In relation to the complex of all environmental factors, C. calceolus is a mesobiont species. On a scale of soil acidity, the species is semistarvation at termokhimicheskie and apolitically scale and dial illumination-shading – metavalent on the scale of the wealth of the soil nitrogen – hemimillennial at createmotions scale and the scale of continentality of the climate avivamento. Only on the scale of soil moisture and the scale of soil salt regime, C. calceolus is stenovalent, which indicates a very limited range of possible habitats for this factor. The species, in the studied habitats, realizes from 4.61 to 23.84 % of its potential according to the studied factors. For C. calceolus, the results obtained allow us to extend the scale of soil acidity by 0.75 degrees to the right. According to the other scales, the values of the ecological space of the studied CP are placed in the ranges given by D. N. Tsyganov for this type Edaphic conditions of C. calceolus on the scale of soil moisture correspond to regimes from dry-saline to wet-forest-saline; on the factor of soil salt regime-poor soils; soil acidity – acidic-slightly acidic soils; soil richness in nitrogen – nitrogen – poor soils; moisture variability-soils with relatively stable and poorly variable moisture.


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


Sign in / Sign up

Export Citation Format

Share Document