Comparative Advantage of Using Biopesticides in Ukrainian Agroecosystems

Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.

2021 ◽  
Vol 7 (1) ◽  
pp. 1-15
Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Simon Neufeld

The use of unsustainable levels of plant protection chemicals and fertilizershas resulted in a steady decline in soil quality and crop productivity the world over. To combat this decline, agricultural practices must evolve to meet the growing global demand for food without irreversibly damaging the world’s natural resources.Biopesticides have tremendous potential to bring sustainability to agriculture and environmental safety.This article is part of a larger study conducted in India by the authors at theUniversité de Montréal with the support of Mitacs and Earth Alive Clean Technologies. In this research, farmers, manufacturers or suppliers of biopesticides, and R&D scientistswere interviewed, and their responses demonstratethe advantages of applyingmicrobial biopesticidesto field crops. Participants reported a15-30% increase in yields and crop production after the application ofbiopesticides, with better quality and quantity of fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of croploss is high (60-70%) with chemicallygrown crops, this risk is reduced to 33% on average when crops are grown using biopesticides. The risk of crop loss is thus considerably reducedby the use ofbiopesticides.Yet, despite their positive impact on the health of humans, soil,ecosystems, andfriendly invertebrates,biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. The development of biopesticides must overcome the problems of improper formulations, short shelf life, delayed action, and high market costs, as well as a variety oflegal/registration issues.


2021 ◽  
pp. bs202103
Author(s):  
Yachana Jha

Applications of synthetic chemical fertilizers and pesticides lead to several environmental hazards, causing damages to entire ecosystem. To reduce damage caused by such chemical inputs in agriculture and environment required a serious attention for replacement of chemicals input with eco-friendly options. In this study decaying macrophytes were selected as an option for organic agriculture, by analyzing its ability to provide important mineral nutrient to the maize crop grown in low nutrient soil as well as for providing resistant towards many common phyto-pathogens to enhance yield. The results of the study showed that decaying macrophytes have high concentration of stored important mineral nutrient in their body mass, which get released in the soil during its decay and to be used by the maize plant. The decaying macrophytes leaf extract have considerable amount of phenolic and flavonoids also having antimicrobial activity. The antimicrobial activity of the leaf extract has been analyzed against the common phyto-pathogen Pseudomonas aeruginosa , and S. aureus by agar disc method and the formation of clear zone indicate its potential as bio-control agent. So under intensive agricultural practices, application of such biological waste is of particular importance for enhancing soil fertility without chemical input, to ensure sustainable agriculture.


Our Nature ◽  
1970 ◽  
Vol 8 (1) ◽  
pp. 270-312 ◽  
Author(s):  
C. Inskipp ◽  
H.S. Baral

This paper is a review of the potential impacts of agriculture on Nepal birds. It includes an overview of agriculture in Nepal and the changes that have taken place between the early 1950s and 2007. Agricultural development has been sluggish, and has failed to keep pace with population growth. In recent years the yields of major food crops in Nepal have been lower than other South Asian countries and Nepal is now dependent on food imports. Land holding size per family and field sizes have both decreased markedly during the period. If hill regions are considered independently, all cereal crops yields have stagnated in the last 30 years and gains in production that have been made, have been due to increases in area of cultivation, at the expense of natural habitats: forests, wetlands and grasslands. Crop productivity in the hills has declined due to land degradation. Of the 28% of Nepal land that is degraded, 10% is poorly managed sloping agriculture terraces. As yields and production of cereal crops have fallen, many farmers have shifted to growing cash crops, to meet the demands of the increasing urban population and encouraged by government agricultural policies. Cultivation area, production and yields of some cash crops have significantly increased since 1964/65. Nepal’s livestock population is one of the highest in Asia and nearly every rural household keeps domestic animals resulting in widespread and serious problems of livestock overgrazing. The importance of agricultural habitats for Nepal birds is reviewed: 21% of bird species recorded in Nepal utilizes agricultural habitats for foraging at some season. The many ecological benefits of birds to agriculture and the damage caused by birds to agriculture are described: the former far outweigh the latter. Changes in agricultural practices (including changes in crops and crop production, impacts of livestock overgrazing) are having major and far-reaching impacts on natural habitats - grasslands wetlands and forests and their bird species; these changes and impacts are detailed and analysed. The increasing use of pesticides in Nepal, which is especially high on vegetable cash crops, the serious impacts of pesticides on birds and the environment and alternatives to pesticides are reviewed. Fertilizer use in Nepal and the damaging impacts of fertilizer over-use on birds and the environment are also reviewed. Recommendations to improve farming methods for the benefit of the environment are given. These include government measures to promote organic agriculture; government measures to expand the System of Rice Intensification and to encourage further use of Effective Microorganisms, both of which have significant benefits for environment, birds and farmers; field surveys to monitor bird populations and bird distribution on agricultural lands, and outreach and awareness-raising for farmers to apply best practice for sustainable environmentally friendly farming.DOI: 10.3126/on.v8i1.4339


2019 ◽  
Vol 7 (2) ◽  
pp. 159-170
Author(s):  
Joachim B. Nachmansohn ◽  
Patricia Imas ◽  
Surinder K. Bansal

Agriculture is the backbone of the Indian economy, in spite of concerned efforts towards industrialization in the last three decades. Therefore, the soil quality and fertility are the major factors in crop production. Declining soil fertility is one of the primary factors that directly affect crop productivity, and fertilizer-use is a key factor in order to keep soil fertility and productivity. A major factor in declining soil fertility is potassium (K) depletion, especially on smallholder farms where fertilization decisions are not based on regular soil testing. Most of the smallholder soybean producers do not have access and investment capacity to soil testing services. Therefore, there is a need to create K fertilizer recommendations based on empirically verified knowledge at India-specific scale. Such large-scale studies, in local filed conditions, are currently lacking. In order to bridge this gap, and generate proven set of directly applicable recommendations, a large-scale plot trial was launched; the Potash for Life (PFL) project. The study evaluated the K response in soybean when fertilizing with potash on K depleted soils in local variable field conditions. The aim was to (1) evaluate the effect and response consistency of K application on soybean yield, (2) to demonstrate to farmers the increased yield and profitability from K-inclusive fertilization regimes for this crop and give recommendations for transient yield increase, and (3) to raise the awareness among smallholder farmers about the importance of K fertilization. A comprehensive experiment was carried out in Madhya Pradesh (M.P.) and Maharashtra. The methodology was straight-forward; two identical plots side by side, with the only difference that one of them was fertilized with additional potash. The results showed a significant yield increase response from the potash application; the average yield increase was 244 kg ha-1 or 26 % in M.P., and 105 kg ha-1 or 36 % in Maharashtra. This entailed an average additional net profit of ₹ 6,681 INR ha-1 and ₹ 2,544 INR ha-1, in M.P. and Maharashtra respectively. It was concluded that the soil status of plant available K is significantly lower than the plant demand for soybean production in the two states, Consequently, K fertilization is necessary in order to improve agricultural practices and optimizing yields. Ultimately, following recommendations given in this study would allow farmers to generate additional profit, which could further allow them to invest in fine-tuning fertilizer practices through the means of soil testing.


Author(s):  
Balaganesh Pandiyan ◽  
Vasudevan Mangottiri ◽  
Natarajan Narayanan

Abstract:: Biochar-Amended Composting (BAC) plays an integral role in sustainable agricultural practices due to its multiple benefits in crop production, soil nutrient retention, carbon sequestration and environmental protection. Although accepted as a traditional method, there is lack of understanding in defining its suitability and efficiency on various base-materials and conditions. Being two carbon-based entities with plentiful nutrients and surface activity, biochar and compost find application in agricultural fields together or separately for improving the soil properties and crop productivity. Recent studies focus on defining the optimum conditions for their preparation, mixing, application and monitoring under various feed, soil, crop and climatic conditions. However, due to the complexity and specificity of the system, many influencing aspects of their interaction are yet unknown in detail. In this review, we analyze the recent advancements in the selection and preparation of new materials for BAC, and explain the mechanisms of Organic Matter (OM) degradation/sequestration happening in soil based on possible chemical/morphological transformations of organic carbon. Most of the performance results are in agreement with the previous records, but a few contradictions observed under diverse experimental conditions. In general, BAC enhanced the mineralization of carbon and sequestration of heavy metals, and stabilized labile fraction of OM due to the development of carbonyl, phenolic and aromatic functional groups on its surface. In addition, aging of biochar resulted in stable N-C=O and amino groups for the adsorption of nitrogen compounds thus decreasing the potential greenhouse gas emissions. The study further identifies potential future research gaps in this area.


2021 ◽  
Author(s):  
Tatiana Marinchenko

Increased demand for food to feed the ever-growing population led to the development and adoption of synthetic chemicals as a quick and effective strategy of managing crop pests and diseases. Such agricultural practices have contributed to environmental pollution, which is further affecting food security, human health, and the climate. At the same time, up to 40% of crops die due to pests and plant diseases. Therefore, sustainable crop production and global food security depend on the timely implementation of the latest scientific projects in various fields of crop production including genetics, breeding, agronomy, crop physiology, crop management practices, biotechnology, and even entomology. The introduction of biological agents to protect, control and stimulate the development of agricultural crops is one of the ways of increasing the efficiency and profitability of production, reducing the environmental burden and increasing the competitiveness of producers. This is consistent with the concepts of a green economy and the sustainable development of agriculture. Since the unilateral use of chemicals does not meet today’s requirements, special attention must be paid to preventative, agrotechnical measures, as well as the use of natural factors for regulating the number of pests using parasitic and predatory insects. Domestic biotechnological developments for crop production which increase production efficiency and reduce the environmental burden are discussed. Keywords: plant growing, entomophages, protection, efficiency, ecology, ecology


Author(s):  
Tanveer Ahmad Ahngar ◽  
Zahida Rashid ◽  
Raies Ahmad Bhat ◽  
Waseem Raja ◽  
Sadaf Iqbal ◽  
...  

Intensive agriculture and excessive use of external inputs are leading to degradation of soil and water resources and negatively affecting agricultural production. This review article aims to determine the role of conservation agriculture for sustaining soil quality and improving crop productivity. Conservation Agriculture (CA) practices cause prominent changes in physical, chemical and biological properties of soil compared to conventional agricultural practices. The improved bio-physico-chemical qualities of soil in turn, affect the ecosystem services and sustainability of crop production system through counterbalancing the climate variability with the help of increasing sink for carbon sequestration within the soil. There was significant interaction of tillage and cropping system on mineral nitrogen measured at the beginning of the cropping system. Mineral N contents were higher with manual tillage and no tillage systems compared with conventional tillage in the soybean maize rotation system. Conservation agriculture also helps in improving the crop production in a sustainable way hence there is an intense need of conservation agriculture which will not only meet the present and future demand of ever increasing population, but also seize degradation of environmental quality.


Author(s):  
Zia Ur Rahman Farooqi ◽  
Zahoor Ahmad ◽  
Muhammad Ashar Ayub ◽  
Wajid Umar ◽  
Muhammad Nadeem ◽  
...  

Arable lands are the major source of food production worldwide. Increasing crop cultivation in the response to population pressure and the use of synthetic fertilizers and chemicals are the main reasons for the conversion of arable lands into problematic soils. Increasing food demand requires to increase the per acre yield of agricultural crops resulting in over exploitation of soil resources. This is a major contributor to soil degradation which is the major threat to the food security of the world. Climate change and poor-quality irrigation are the other problems are also affecting crop productivity and the conversion of arable lands into problematic lands. Deforestation and urbanization are the main reasons behind the conversion of agricultural land into infrastructure. Adopting precision agriculture, vertical farming and good agricultural practices are the only ways to conserve arable lands. This chapter provides a keen overview of world arable land issues with the focus on threats to arable land and possible solutions to overcome this issue.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1837 ◽  
Author(s):  
Stela Stoyanova ◽  
Elenka Georgieva ◽  
Iliana Velcheva ◽  
Ilia Iliev ◽  
Tonka Vasileva ◽  
...  

The excessive use of pesticides at different stages of crop production can pose a great danger to the aquatic environment, and particularly to fish. The purpose of the present work was to assess the negative effects of chlorpyrifos (CPF) on the liver histological architecture and the activities of marker enzymes in common carp (Cyprinus carpio Linnaeus, 1758), by applying a multi-biomarker technique. The tested insecticide is categorized as a priority pollutant in surface waters in terms of Directive 2013/39/EU. The carps were exposed to different and environmentally relevant CPF concentrations for 72 h (a short-term acute experiment). The results showed that the tested insecticide alters the liver histological structure, causing degenerative lesions, such as granular and vacuolar degeneration; necrobiotic alterations and necrosis, as well as changes in the circulatory system. In addition, CPF induces changes in the enzymatic activity of lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), cholinesterase (ChE), glutathione peroxidase (GPx) and catalase (CAT). The results from such experimental set ups could be successfully used in the legislation related to the protection of water bodies from contamination, in areas with intensive application of plant protection products used in agricultural practices, and also in implementing the Water Frame Directive by using multi-biomarker approaches.


2021 ◽  
Vol 9 (3) ◽  
pp. 160-165
Author(s):  
Sangam Panta ◽  
Dipika Parajulee

The world vision of no hunger target, food security, and zero poverty followed by raising standards of living of rural people through agricultural transformation is the greatest challenges faced by the agricultural planners worldwide. Due to the alarming state of population growth and cultivable land scarcity, change in agronomic practices which could bring a significant effect on crop production and productivity is urgently needed. The concept of using different sources of plant nutrients combined to check nutrient depletion, maintain soil health, and crop productivity, called INM, has a bright solution in this area. Recently several researchers introduced that integrated use of inorganic fertilizers, organic fertilizers, green manure, and bio-fertilizers is becoming an effective practice not only for increasing crop production and productivity but also for the better crop and soil health. In addition, INM helps to increase the activity of soil microorganisms and improves the soil physical, chemical and biological properties. So, INM create an economic eco-friendly environment by reducing the dependence on inorganic chemical fertilizers and improving the soil fertility, optimizing crop yield, maximizing profitability and ultimately making the agriculture sustainable. Lastly, INM is one of the good agricultural practices which needs to be followed by every conscious individual in order to maintain soil health, nutrient balance and to make the agriculture and environment more sustainable.  Int. J. Appl. Sci. Biotechnol. Vol 9(3): 160-165  


Sign in / Sign up

Export Citation Format

Share Document