Pollution Impacts at the Stand and Ecosystem Levels

Author(s):  
D. Binkley ◽  
T. D. Droessler ◽  
J. Miller
Keyword(s):  
1993 ◽  
Vol 27 (12) ◽  
pp. 205-208
Author(s):  
Dirk-Th Kollatsch

For upgrading the urban drainage system (UDS) the reduction of pollution impacts is the priority task concerning the environmental protection of the receiving waters. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities within the UDS can be shown. Models to simulate the pollutant impacts, transport and the effects on the receiving waters are available. In a first step a pollutant transport model of sewer systems and a model to simulate the wastewater treatment processes are connected. With these models the efficiency of upgrading measures can be checked in all parts of urban drainage systems.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 43-50 ◽  
Author(s):  
Marcelo Juanico ◽  
Eran Friedler

Most of the water has been captured in the rivers of Israel and they have turned into dry river-beds which deliver only sporadic winter floods. In a semi-arid country where literally every drop of water is used, reclaimed wastewater is the most feasible water source for river recovery. Two topics are addressed in this paper: water quality management in rivers where most of the flowing water is treated wastewater, and the allocations of reclaimed wastewater required for the recovery of rivers and streams. Water quality management must consider that the main source of water to the river has a pollution loading which reduces its capability to absorb other pollution impacts. The allocation of treated wastewater for the revival of rivers may not affect negatively the water balance of the region; it may eventually improve it. An upstream bruto allocation of 122 MCM/year of wastewater for the recovery of 14 rivers in Israel may favor downstream reuse of this wastewater, resulting in a small neto allocation and in an increase of the water resources available to the country. The discharge of effluents upstream to revive the river followed by their re-capture downstream for irrigation, implies a further stage in the intensification of water reuse.


2021 ◽  
Author(s):  
Luka Vucinic ◽  
David O'Connell ◽  
Donata Dubber ◽  
Patrice Behan ◽  
Quentin Crowley ◽  
...  

<p>Lowland karst aquifers in Ireland are extremely complex to understand and are considered to be highly vulnerable to pollution (e.g. low-lying karst catchments exhibit a lot of surface water – groundwater interactions which makes them very susceptible to direct contamination). These aquifers are impacted by multiple contamination sources on land (in particular, rural sources from agriculture and on-site domestic wastewater effluent) which makes their protection and management challenging. Human wastewater effluent is identified as significant threat to groundwater quality in such lowland Irish karst environments, since approximately one-third of the population in Ireland is relying on decentralized wastewater treatment systems for the treatment of domestic wastewater. However, it is difficult to distinguish between human wastewater effluent and agricultural pollution impacts on karst aquifers using only traditional water quality parameters or any single environmental tracing method. Hence, the impact of microbial and chemical contaminants of human wastewater origin on groundwater quality must be assessed using a multiple-tracer approach, ideally targeting source-specific tracers. This paper presents an overview of the results obtained during the research conducted throughout the last several years at nine karst catchments in Ireland using a range of methodologies in order to determine and quantify domestic wastewater pollution impacts on karst springs. Microbial pollution was assessed using flow cytometric fingerprinting and faecal indicator bacteria, while chemical pollution impact assessment included the analysis of fluorescent whitening compounds (FWCs; well-known indicators of human contamination since their origin is mostly from laundry detergents), specific anion ratio signatures (Cl/Br), quantification and identification of microplastic particles using Fourier-transform infrared spectroscopy (FTIR), and faecal sterol and stanol profiles and ratios. A thorough analysis of the results obtained using a multiple-tracer approach has been conducted and methodologies have been evaluated in terms of applicability and sensitivity in a range of different karst catchments. The ability of these methodologies and techniques to determine and quantify human faecal pollution impacts on karst springs will be discussed. The results show a significant correlation between microplastic particle counts and detected FWCs signals at different springs, which helps to understand the contribution of household-derived contaminants to this environmental problem. Moreover, our results indicate that faecal sterols and stanols can be useful faecal source tracking method in karst aquifer systems despite the fact that concentrations of sterols and stanols of interest were usually low which makes the interpretation of results challenging.</p>


Sign in / Sign up

Export Citation Format

Share Document