Fluid and Electrolyte Balance and Hormonal Response to the Hypoxic Environment

Author(s):  
John R. Claybaugh ◽  
Charles E. Wade ◽  
Samuel A. Cucinell
2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2004 ◽  
Vol 36 (05) ◽  
Author(s):  
T Raedler ◽  
H Jahn ◽  
B Goedecken ◽  
D Gescher ◽  
M Kellner ◽  
...  
Keyword(s):  

2019 ◽  
Vol 23 (1) ◽  
pp. 127-134
Author(s):  
Al Hadad Mousa ◽  
Ahmed Abd El-Mabood ◽  
Hamza Mahmoud ◽  
Bahaa Refaie

Author(s):  
Paola Rodriguez-Giustiniani ◽  
Nidia Rodriguez-Sanchez ◽  
Stuart D.R. Galloway

2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhenyu Duan ◽  
Qiang Luo ◽  
Lei Gu ◽  
Xiaoling Li ◽  
Hongyan Zhu ◽  
...  

A hypoxic environment in tumors hampers the therapeutic efficacy of radiotherapy. Moreover, radiotherapy, a localized treatment technique, can barely control tumor metastases. Herein, poly(lactic co-glycolic acid) was used to encapsulate...


2021 ◽  
Author(s):  
Xiaopeng Xu ◽  
Bingqing Wang ◽  
Zhuoyuan Jiang ◽  
Qi Chen ◽  
Ke Mao ◽  
...  

Abstract Craniofacial microsomia (CFM, OMIM%164 210) is one of the most common congenital facial abnormalities worldwide, but it’s genetic risk factors and environmental threats are poorly investigated, as well as their interaction, making the diagnosis and prenatal screening of CFM impossible. We perform a comprehensive association study on the largest CFM cohort of 6074 samples. We identify 15 significant (P < 5 × 10−8) associated genomic loci (including eight previously reported) and decipher 107 candidates based on multi-omics data. Gene Ontology term enrichment found that these candidates are mainly enriched in neural crest cell (NCC) development and hypoxic environment. Single-cell RNA-seq data of mouse embryo demonstrate that nine of them show dramatic expression change during early cranial NCC development whose dysplasia is involved in pathogeny of CFM. Furthermore, we construct a well-performed CFM risk-predicting model based on polygenic risk score (PRS) method and estimate seven environmental risk factors that interacting with PRS. Single-nucleotide polymorphism-based PRS is significantly associated with CFM [P = 7.22 × 10−58, odds ratio = 3.15, 95% confidence interval (CI) 2.74–3.63], and the top fifth percentile has a 6.8-fold CFM risk comparing with the 10th percentile. Father’s smoking increases CFM risk as evidenced by interaction parameter of −0.324 (95% CI −0.578 to −0.070, P = 0.011) with PRS. In conclusion, the newly identified risk loci will significantly improve our understandings of genetics contribution to CFM. The risk prediction model is promising for CFM prediction, and father’s smoking is a key environmental risk factor for CFM through interacting with genetic factors.


1990 ◽  
Vol 259 (6) ◽  
pp. L351-L358 ◽  
Author(s):  
R. T. Shiao ◽  
H. B. Kostenbauder ◽  
J. W. Olson ◽  
M. N. Gillespie

Chronic hypoxia causes polyamine-dependent hypertensive pulmonary vascular remodeling (J. E. Atkinson. J. W. Olson, R. J. Altierre, and M. N. Gillespie, J. Appl. Physiol. 62: 1562–1568, 1987), but mechanisms by which lung polyamine contents are elevated have not been established. This study measured polyamine contents, biosynthetic activities, and transport in lungs of rats exposed to hypobaric hypoxia (simulated altitude: 4,570 m) for 4–14 days. Hypoxia increased lung contents of spermidine and spermine within 40 h and of putrescine within 4 days. These changes preceded hypoxia-induced increases in pulmonary arterial pressure and development of right ventricular hypertrophy. Additional experiments determined whether increased lung polyamine contents could be ascribed to elevated activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in conversion of ornithine to putrescine. Lung ODC activity did not differ from controls at 40 h posthypoxia and was reduced below control levels from 4–14 days of exposure. Putrescine transport kinetics were assessed in isolated, salt solution-perfused lungs. Apparent Km for putrescine uptake was increased from 10.4 microM in control lungs to 16.9 microM in lungs from rats maintained for 7 days in an hypoxic environment. Maximal velocity (Vmax) of lung putrescine transport was increased from 1.67 nmol.g-1.min-1 in controls to 2.65 in hypoxic lungs. Putrescine efflux also was altered by hypoxic exposure; T1/2 for loss of diamine from a slowly effluxing pool was increased from 60.6 min in controls to 91.5 min in hypoxic lungs.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document