Preconcentration of Uranium in Natural Waters for X-ray Fluorescence Analysis

1977 ◽  
pp. 453-458 ◽  
Author(s):  
L. R. Hathaway ◽  
G. W. James
2017 ◽  
Vol 32 (9) ◽  
pp. 1705-1712 ◽  
Author(s):  
Vanesa Romero ◽  
Laura Vilas ◽  
Isela Lavilla ◽  
Carlos Bendicho

Inorganic As and Sb speciation by total reflection X-ray fluorescence analysis following selective hydride generation and trapping onto palladium nanoparticles.


1976 ◽  
Vol 20 ◽  
pp. 453-458 ◽  
Author(s):  
L. R. Hathaway ◽  
G. W. James

Use of Chelex-100 impregnated filter membranes for preconcentration of uranium in ground-water samples for XRF analysis leads to lower processing time, sample size, and detection limit than achieved in a batch extraction process. Data is presented, for potential effects of iron and organic matter in natural waters upon the recovery of uranium when using Chelex-100.


Author(s):  
Anastasiya Kutuzova ◽  
Tetiana Dontsova ◽  
Maryna Davydova

Antibiotics have been found in water bodies of different origin around the world, including natural waters. The presence of antibiotics in natural waters is already an important environmental problem, as they pose a potential threat to the environment. Analysis of the literature shows that photocatalytic methods are considered to be more promising than biological methods and adsorption processes for the treatment of water bodies contaminated with antibiotics and other pharmaceuticals. The aim of this study was to determine the efficiency of antibiotics removal (ciprofloxacin, sulfamethoxazole and trimethoprim) by photocatalytic methods over TiO2 photocatalyst modified with yttrium oxide. For this purpose, a commercial sample of TiO2 P25 (Evonik) was modified, which was further characterized by X-ray diffraction and X-ray fluorescence analysis methods. The obtained data indicate the presence of yttrium in commercial P25 sample after modification. Studies on the removal of antibiotics from aqueous solutions by photocatalytic methods were carried out in three ways: employing modified photocatalyst; combination of photocatalyst and hydrogen peroxide, and the combination of photocatalyst with hydrogen peroxide and ozone. The results of research demonstrate high efficiency of photocatalytic methods in the oxidation of antibiotics in aqueous solutions, among which the greatest oxidation is achieved using the combination of heterogeneous photocatalyst, hydrogen peroxide and ozone.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


2020 ◽  
Vol 86 (10) ◽  
pp. 5-9
Author(s):  
D. G. Filatova ◽  
A. A. Arkhipenko ◽  
M. A. Statkus ◽  
V. V. Es’kina ◽  
V. B. Baranovskaya ◽  
...  

An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.


Sign in / Sign up

Export Citation Format

Share Document