The HIF-1 Family of bHLH-PAS Proteins: Master Regulators of Oxygen Homeostasis

Author(s):  
Gregg L. Semenza
2018 ◽  
Author(s):  
Paolo Madeddu

The year 2018 marked the 110th anniversary of Goldmann’s discovery that vascularization is an active process in tissues1 and the 50th anniversary of the concomitant reports from Greenblatt and Shubik2 and Ehrmann and Knoth3 that soluble morphogenic factors are required for cancer angiogenesis. Many other radically transformative paradigms have been introduced in the last decades. To name a few, the molecular search for the identity of master regulators of vascular tone led to the discovery of the Endothelium-Derived Relaxing Factor (EDRF; i.e., NO4), while clinically inspired investigations led to the recognition of the pathophysiological relevance of neoangiogenesis in cancer and tissue healing. This brought about the proposal of blocking angiogenesis to halt tumor growth and stimulating angiogenesis to treat myocardial ischemia and heart failure5-7.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José C. Páez-Franco ◽  
Jiram Torres-Ruiz ◽  
Víctor A. Sosa-Hernández ◽  
Rodrigo Cervantes-Díaz ◽  
Sandra Romero-Ramírez ◽  
...  

AbstractWe identified the main changes in serum metabolites associated with severe (n = 46) and mild (n = 19) COVID-19 patients by gas chromatography coupled to mass spectrometry. The modified metabolic profiles were associated to an altered amino acid catabolism in hypoxic conditions. Noteworthy, three α-hydroxyl acids of amino acid origin increased with disease severity and correlated with altered oxygen saturation levels and clinical markers of lung damage. We hypothesize that the enzymatic conversion of α-keto-acids to α- hydroxyl-acids helps to maintain NAD recycling in patients with altered oxygen levels, highlighting the potential relevance of amino acid supplementation during SARS-CoV-2 infection.


2020 ◽  
pp. jim-2020-001616
Author(s):  
Jingrui Huang ◽  
Yingming Xie ◽  
Qiaozhen Peng ◽  
Weinan Wang ◽  
Chenlin Pei ◽  
...  

To investigate the heterogeneity of decidual stromal cells (DSCs) and their functional alterations during delivery, we conducted single-cell RNA sequencing analysis to characterize the transcriptomic profiles of DSCs before and after labor onset. According to their transcriptomic profiles, DSCs (6382 cells) were clustered into five subgroups with different functions. Similar to stromal cells, cells in cluster 1 were involved in cell substrate adhesion. On the other hand, cells in clusters 2 and 3 were enriched in signal transduction-related genes. Labor onset led to significant alterations in many pathways, including the activator protein 1 pathway (all clusters), as well as in the response to lipopolysaccharide (clusters 1–3). The downregulated genes were involved in coagulation, ATP synthesis, and oxygen homeostasis, possibly reflecting the oxygen and energy balance during delivery. Our findings highlight that peripartum DSCs are heterogeneous and play multiple roles in labor.


2019 ◽  
Vol 10 ◽  
Author(s):  
Brian S. Robinson ◽  
Connie M. Arthur ◽  
Birk Evavold ◽  
Ethan Roback ◽  
Nourine A. Kamili ◽  
...  

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew J. Bush ◽  
Maureen J. Bibb ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacteriumStreptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA inStreptomycesdevelopment and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus,Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed thatwhiAis required for the initiation of sporulation septation and chromosome segregation inS. venezuelae, and several genes encoding key proteins of theStreptomycescell division machinery, such asftsZ,ftsW, andftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σWhiGand the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, andfilP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation.IMPORTANCESince the initial identification of the genetic loci required forStreptomycesdevelopment, all of thebldandwhidevelopmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction ofStreptomyces venezuelaeas a new model system for the genus, a species that sporulates in liquid culture. Taking advantage ofS. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document