The Influence of the Intestinal Unstirred Water Layers on the Understanding of the Mechanisms of Lipid Absorption

2001 ◽  
pp. 135-152 ◽  
Author(s):  
Alan B. R. Thomson ◽  
Gary Wild
2010 ◽  
Vol 5 (S 01) ◽  
Author(s):  
A Jaschke ◽  
D Hesse ◽  
KJ Petzke ◽  
H Koepsell ◽  
HG Joost ◽  
...  
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


1983 ◽  
Vol 24 (10) ◽  
pp. 1310-1320
Author(s):  
C M Mansbach
Keyword(s):  

iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102077
Author(s):  
Hu Hua ◽  
Yue Zhang ◽  
Fei Zhao ◽  
Ke Chen ◽  
Tong Wu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3946
Author(s):  
Rui A. Gonçalves ◽  
Yeng-Ming Lam ◽  
Björn Lindman

Double-chain amphiphilic compounds, including surfactants and lipids, have broad significance in applications like personal care and biology. A study on the phase structures and their transitions focusing on dioctadecyldimethylammonium chloride (DODAC), used inter alia in hair conditioners, is presented. The phase behaviour is dominated by two bilayer lamellar phases, Lβ and Lα, with “solid” and “melted” alkyl chains, respectively. In particular, the study is focused on the effect of additives of different polarity on the phase transitions and structures. The main techniques used for investigation were differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). From the WAXS reflections, the distance between the alkyl chains in the bilayers was obtained, and from SAXS, the thicknesses of the surfactant and water layers. The Lα phase was found to have a bilayer structure, generally found for most surfactants; a Lβ phase made up of bilayers with considerable chain tilting and interdigitation was also identified. Depending mainly on the polarity of the additives, their effects on the phase stabilities and structure vary. Compounds like urea have no significant effect, while fatty acids and fatty alcohols have significant effects, but which are quite different depending on the nonpolar part. In most cases, Lβ and Lα phases exist over wide composition ranges; certain additives induce transitions to other phases, which include cubic, reversed hexagonal liquid crystals and bicontinuous liquid phases. For a system containing additives, which induce a significant lowering of the Lβ–Lα transition, we identified the possibility of a triggered phase transition via dilution with water.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


2012 ◽  
Vol 15 (4) ◽  
pp. 336-341 ◽  
Author(s):  
M. Mahmood Hussain ◽  
Xiaoyue Pan

2003 ◽  
Vol 19 (5) ◽  
pp. 385-390 ◽  
Author(s):  
Igor Sukhotnik ◽  
A. Semih Gork ◽  
Min Chen ◽  
Robert A. Drongowski ◽  
Arnold G. Coran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document