Iron Mineralization by Bacteria: Metabolic Coupling of Iron Reduction to Cell Metabolism in Alteromonas Putrefaciens Strain MR-1

1991 ◽  
pp. 131-149 ◽  
Author(s):  
Charles R. Myers ◽  
Kenneth H. Nealson
2020 ◽  
Vol 117 (20) ◽  
pp. 10660-10666 ◽  
Author(s):  
Gabrielle Woronoff ◽  
Philippe Nghe ◽  
Jean Baudry ◽  
Laurent Boitard ◽  
Erez Braun ◽  
...  

Cells can rapidly adapt to changing environments through nongenetic processes; however, the metabolic cost of such adaptation has never been considered. Here we demonstrate metabolic coupling in a remarkable, rapid adaptation process (1 in 1,000 cells adapt per hour) by simultaneously measuring metabolism and division of thousands of individual Saccharomyces cerevisiae cells using a droplet microfluidic system: droplets containing single cells are immobilized in a two-dimensional (2D) array, with osmotically induced changes in droplet volume being used to measure cell metabolism, while simultaneously imaging the cells to measure division. Following a severe challenge, most cells, while not dividing, continue to metabolize, displaying a remarkably wide diversity of metabolic trajectories from which adaptation events can be anticipated. Adaptation requires a characteristic amount of energy, indicating that it is an active process. The demonstration that metabolic trajectories predict a priori adaptation events provides evidence of tight energetic coupling between metabolism and regulatory reorganization in adaptation. This process allows S. cerevisiae to adapt on a physiological timescale, but related phenomena may also be important in other processes, such as cellular differentiation, cellular reprogramming, and the emergence of drug resistance in cancer.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhongying Wang ◽  
Tatyana Gurlo ◽  
Aleksey V. Matveyenko ◽  
David Elashoff ◽  
Peiyu Wang ◽  
...  

AbstractType 2 diabetes is characterized by β and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in β cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in β cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.


1969 ◽  
Vol 124 (5) ◽  
pp. 530-538 ◽  
Author(s):  
G. Nichols
Keyword(s):  

1972 ◽  
Vol 69 (1) ◽  
pp. 165-173 ◽  
Author(s):  
H. Schmidt ◽  
I. Noack ◽  
K. D. Voigt

ABSTRACT The effect of testosterone and 5α-dihydrotestosterone on protein and nucleic acid content as well as on the activities of some enzymes has been studied in the ventral prostate and the seminal vesicles of immature castrated rats. Both androgens were given intraperitoneally in doses of 1 mg daily for one or three days the rats were sacrificed one day after the last injection. In the prostate it was found that 5α-dihydrotestosterone had a greater effect on DNA increase, i. e. cell proliferation than testosterone, whereas cell metabolism was stimulated by the two androgens to nearly the same extent. In the seminal vesicles a single dose led to the same results as had been obtained in the prostate, i. e. a greater cell proliferative action of 5α-dihydrotestosterone and an equal stimulation of cell metabolism by testosterone and 5α-dihydrotestosterone was also observed. When three doses of the two androgens were given, cell proliferation as well as cell metabolism in the seminal vesicles were significantly more increased after 5α-dihydrotestosterone than after testosterone. The difference of action after systemic administration of the two androgens is explained by their different accumulation and by their different peripheral metabolism in the target tissues. From the partly independent effects of various androgens on cell proliferation and cell metabolism the conclusion may be drawn that there exist at least two intracellular sites of action.


2018 ◽  
Vol 18 (6) ◽  
pp. 432-443 ◽  
Author(s):  
Minsoo Song ◽  
Soong-Hyun Kim ◽  
Chun Young Im ◽  
Hee-Jong Hwang

Glutaminase (GLS), which is responsible for the conversion of glutamine to glutamate, plays a vital role in up-regulating cell metabolism for tumor cell growth and is considered to be a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed in both academia and industry. Most importantly, Calithera Biosciences Inc. is actively developing the glutaminase inhibitor CB-839 for the treatment of various cancers, and it is currently being evaluated in phase 1 and 2 clinical trials. In this review, recent efforts to develop small molecule glutaminase inhibitors that target glutamine metabolism in both preclinical and clinical studies are discussed. In particular, more emphasis is placed on CB-839 because it is the only small molecule GLS inhibitor being studied in a clinical setting. The inhibition mechanism is also discussed based on X-ray structure studies of thiadiazole derivatives present in glutaminase inhibitor BPTES. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are described in the hopes of providing useful information for the next generation of GLS inhibitors.


Sign in / Sign up

Export Citation Format

Share Document