scholarly journals Metabolic cost of rapid adaptation of single yeast cells

2020 ◽  
Vol 117 (20) ◽  
pp. 10660-10666 ◽  
Author(s):  
Gabrielle Woronoff ◽  
Philippe Nghe ◽  
Jean Baudry ◽  
Laurent Boitard ◽  
Erez Braun ◽  
...  

Cells can rapidly adapt to changing environments through nongenetic processes; however, the metabolic cost of such adaptation has never been considered. Here we demonstrate metabolic coupling in a remarkable, rapid adaptation process (1 in 1,000 cells adapt per hour) by simultaneously measuring metabolism and division of thousands of individual Saccharomyces cerevisiae cells using a droplet microfluidic system: droplets containing single cells are immobilized in a two-dimensional (2D) array, with osmotically induced changes in droplet volume being used to measure cell metabolism, while simultaneously imaging the cells to measure division. Following a severe challenge, most cells, while not dividing, continue to metabolize, displaying a remarkably wide diversity of metabolic trajectories from which adaptation events can be anticipated. Adaptation requires a characteristic amount of energy, indicating that it is an active process. The demonstration that metabolic trajectories predict a priori adaptation events provides evidence of tight energetic coupling between metabolism and regulatory reorganization in adaptation. This process allows S. cerevisiae to adapt on a physiological timescale, but related phenomena may also be important in other processes, such as cellular differentiation, cellular reprogramming, and the emergence of drug resistance in cancer.

2019 ◽  
Author(s):  
Gabrielle Woronoff ◽  
Philippe Nghe ◽  
Jean Baudry ◽  
Laurent Boitard ◽  
Erez Braun ◽  
...  

AbstractCells can rapidly adapt to changing environments through non-genetic processes; however, the metabolic cost of such adaptation has never been considered. Here we demonstrate metabolic coupling in a remarkable, rapid adaptation process (10-3cells/hour) by simultaneously measuring metabolism and division of thousands of individual Saccharomyces cerevisiae cells using a droplet microfluidic system. Following a severe challenge, most cells, while not dividing, continue to metabolize, displaying a remarkably wide diversity of metabolic trajectories from which adaptation events can be anticipated. Adaptation requires the consumption of a characteristic amount of energy, indicating that it is an active process. The demonstration that metabolic trajectories predict a priori adaptation events provides the first evidence of tight energetic coupling between metabolism and regulatory reorganization in adaptation.One Sentence SummaryDemonstration of the tight coupling between metabolic activity and regulatory processes during rapid adaptation at the single-cell level.


2019 ◽  
Vol 116 (19) ◽  
pp. 9463-9468 ◽  
Author(s):  
Katherine S. Geist ◽  
Joan E. Strassmann ◽  
David C. Queller

Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host−pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis. As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.


2016 ◽  
Vol 37 (3) ◽  
pp. 1229 ◽  
Author(s):  
Claudia Brito de Abreu ◽  
Bárbara Lima do Sacramento ◽  
Andréia Teixeira Alves ◽  
Silvany Cardim Moura ◽  
Milena Santos Pinelli ◽  
...  

The aim of this study was to evaluate the effects of increasing concentrations of lead (Pb) in the nutrient solution on growth and macronutrient and organic solute contents of Helianthus annuus plants. The experimental design was completely randomized with four replications. The dry mass yield was not affected by the treatments up to a Pb concentration of 0.6 mM, indicating that H. annuus was tolerant to this Pb concentration in the growth medium. The reductions in leaf, stem and root dry masses at a Pb concentration of 0.8 mM were 74, 84 and 85%, respectively. Lead stress did not reduce the levels of nitrogen (N), phosphorus (P) and potassium (K), indicating that the growth reduction observed at 0.8 mM Pb could not be attributed to deficiencies of these nutrients. On the other hand, Pb significantly reduced calcium (Ca) and magnesium (Mg) contents in leaves, stems and roots, which might, at least in part, explain the Pb-induced growth reduction in the H. annuus plants. Pb increased soluble carbohydrate, free amino acid and proline contents in leaves, and soluble protein and proline contents in roots, showing stress-induced changes in cell metabolism. The data also suggest that Ca and Mg concentrations may be used as nutritional indicators and the proline content may be used as a biochemical indicator of Pb toxicity in H. annuus.


1998 ◽  
Vol 79 (2) ◽  
pp. 704-715 ◽  
Author(s):  
Charles A. Scudder ◽  
Ekatherina Y. Batourina ◽  
George S. Tunder

Scudder, Charles A., Ekatherina Y. Batourina, and George S. Tunder. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J. Neurophysiol. 79: 704–715, 1998. Saccade accuracy is known to be maintained by adaptive mechanisms that progressively reduce any visual error that consistently exists at the end of saccades. Experimentally, the visual error is induced using one of two paradigms. In the first, the horizontal and medial recti of trained monkeys are tenectomized and allowed to reattach so that both muscles are paretic. After patching the unoperated eye and forcing the monkey to use the “paretic eye,” saccades initially undershoot the intended target, but gradually increase in size until they almost acquire the target in one step. In the second, the target of a saccade is displaced in midsaccade so that the saccade cannot land on target. Again saccade size adapts until the target can be acquired in one step. Because adaptation with the latter paradigm is very rapid but adaptation using the former is slow, it has frequently been questioned whether or not the two forms of adaptation depend on the same neural mechanisms. We show that the rate of adaptation in both paradigms depends on the number of possible visual targets, so that when this variable is equated, adaptation occurs at similar rates in both paradigms. To demonstrate further similarities between the result of the two paradigms, an experiment using intrasaccadic displacements was conducted to show that rapid adaptation possesses the capacity to produce gain changes that vary with orbital position. The relative size of intrasaccadic displacements were graded with orbital position so as to mimic the position-dependent dysmetria initially produced by a single paretic extraocular muscle. Induced changes in saccade size paralleled the size of the displacements, being largest for saccades into one hemifield and being negligible for saccades into the other hemifield or in the opposite direction. Collectively, the data remove the rational for asserting that adaptation produced by the two paradigms depends on separate neural mechanisms. We argue that adaptation produced by both paradigms depends on the cerebellum.


2022 ◽  
Vol 11 ◽  
Author(s):  
Dingju Wei ◽  
Meng Xu ◽  
Zhihua Wang ◽  
Jingjing Tong

Metabolic reprogramming is one of the hallmarks of malignant tumors, which provides energy and material basis for tumor rapid proliferation, immune escape, as well as extensive invasion and metastasis. Blocking the energy and material supply of tumor cells is one of the strategies to treat tumor, however tumor cell metabolic heterogeneity prevents metabolic-based anti-cancer treatment. Therefore, searching for the key metabolic factors that regulate cell cancerous change and tumor recurrence has become a major challenge. Emerging technology––single-cell metabolomics is different from the traditional metabolomics that obtains average information of a group of cells. Single-cell metabolomics identifies the metabolites of single cells in different states by mass spectrometry, and captures the molecular biological information of the energy and substances synthesized in single cells, which provides more detailed information for tumor treatment metabolic target screening. This review will combine the current research status of tumor cell metabolism with the advantages of single-cell metabolomics technology, and explore the role of single-cell sequencing technology in searching key factors regulating tumor metabolism. The addition of single-cell technology will accelerate the development of metabolism-based anti-cancer strategies, which may greatly improve the prognostic survival rate of cancer patients.


2014 ◽  
Author(s):  
Nikolai Slavov ◽  
David Botstein ◽  
Amy Caudy

Yeast cells grown in culture can spontaneously synchronize their respiration, metabolism, gene expression and cell division. Such metabolic oscillations in synchronized cultures reflect single-cell oscillations, but the relationship between the oscillations in single cells and synchronized cultures is poorly understood. To understand this relationship and the coordination between metabolism and cell division, we collected and analyzed DNA-content, gene-expression and physiological data, at hundreds of time-points, from cultures metabolically-synchronized at different growth rates, carbon sources and biomass densities. The data enabled us to extend and generalize our mechanistic model, based on ensemble average over phases (EAP), connecting the population-average gene-expression of asynchronous cultures to the gene-expression dynamics in the single-cells comprising the cultures. The extended model explains the carbon-source specific growth-rate responses of hundreds of genes. Our physiological data demonstrate that the frequency of metabolic cycling in synchronized cultures increases with the biomass density, suggesting that this cycling is an emergent behavior, resulting from the entraining of the single-cell metabolic cycle by a quorum-sensing mechanism, and thus underscoring the difference between metabolic cycling in single cells and in synchronized cultures. Measurements of constant levels of residual glucose across metabolically synchronized cultures indicate that storage carbohydrates are required to fuel not only the G1/S transition of the division cycle but also the metabolic cycle. Despite the large variation in profiled conditions and in the scale of their dynamics, most genes preserve invariant dynamics of coordination with each other and with the rate of oxygen consumption. Similarly, the G1/S transition always occurs at the beginning, middle or end of the high oxygen consumption phases, analogous to observations in human and drosophila cells. These results highlight evolutionary conserved coordination among metabolism, cell growth and division.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 372
Author(s):  
Kiran J. van der Laan ◽  
Aryan Morita ◽  
Felipe P. Perona-Martinez ◽  
Romana Schirhagl

Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research.


2007 ◽  
Vol 7 ◽  
pp. 1073-1081 ◽  
Author(s):  
Luigi F. Agnati ◽  
Giuseppina Leo ◽  
Susanna Genedani ◽  
Diego Guidolin ◽  
Nicola Andreoli ◽  
...  

It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers), but clusters of receptors (receptor mosaics), altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.


Sign in / Sign up

Export Citation Format

Share Document