Physical, Biological and Host Factors in Iron Competition in Soils

Author(s):  
R. Baker ◽  
Y. Elad ◽  
B. Sneh
Pneumologie ◽  
2004 ◽  
Vol 58 (S 1) ◽  
Author(s):  
R Erzen ◽  
E Music ◽  
V Tomic
Keyword(s):  

Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 439-450 ◽  
Author(s):  
Diya Banerjee ◽  
Xiaochun Zhang ◽  
Andrew F Bent

Abstract Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F2 and F3 progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 861
Author(s):  
Minghang Wang ◽  
Zongdi Feng

Hepatitis A virus (HAV) infection is a common cause of acute viral hepatitis worldwide. Despite decades of research, the pathogenic mechanisms of hepatitis A remain incompletely understood. As the replication of HAV is noncytopathic in vitro, a widely accepted concept has been that virus-specific cytotoxic T cells are responsible for liver injury. However, accumulating evidence suggests that natural killer (NK) cells, NKT cells, and even non-HAV-specific CD8+ T cells contribute to liver damage during HAV infection. In addition, intrinsic death of virus-infected hepatocytes has been implicated as a cause of liver injury in a murine model of hepatitis A. Furthermore, genetic variations in host factors such as T cell immunoglobulin-1 (TIM1) and IL-18 binding protein (IL-18BP) have been linked to hepatitis A severity. This review summarizes the current knowledge of the mechanisms of hepatocellular injury in hepatitis A. Different mechanisms may be involved under different conditions and they are not necessarily mutually exclusive. A better understanding of these mechanisms would aid in diagnosis and treatment of diseases associated with HAV infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Chen ◽  
Yonghong Zhong ◽  
Na Li ◽  
Huijie Wang ◽  
Yanbin Tan ◽  
...  

Abstract Background In nonneutropenic patients with underlying respiratory diseases (URD), invasive pulmonary aspergillosis (IPA) is a life-threatening disease. Yet establishing early diagnosis in those patients remains quite a challenge. Methods A retrospective series of nonneutropenic patients with probable or proven IPA were reviewed from January 2014 to May 2018 in Department of Respiratory Medicine of two Chinese hospitals. Those patients were suspected of IPA and underwent lung computed tomography (CT) scans twice within 5–21 days. The items required for IPA diagnosis were assessed by their host factors, mycological findings and CT scans according to the European Organization for Research and Treatment of Cancer (EORTC) and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (MSG) criteria (EORTC/MSG criteria). Results Together with the risk factors, mycological findings and nonspecific radiological signs on first CT, ten patients were suspected of IPA. With the appearance of cavities on second CT scan in the following days, all patients met the criteria of probable or possible IPA. Except one patient who refused antifungal treatment, nine patients received timely antifungal treatment and recovered well. One of the nine treated IPA cases was further confirmed by pathology, one was confirmed by biopsy. Conclusions Dynamic monitor of CT scan provided specific image evidences for IPA diagnosis. This novel finding might provide a noninvasive and efficient strategy in IPA diagnosis with URD.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-59
Author(s):  
Selvakumar Subbian

The Coronavirus Disease-2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has claimed 1.2 million people globally since December 2019. Although the host factors underpinning COVID-19 pathology are not fully understood, type I interferon (IFN-I) response is considered crucial for SARS-CoV-2 pathogenesis. Perturbations in IFN-I signaling and associated interferon-inducible genes (ISG) are among the primary disease severity indicators in COVID-19. Consequently, IFN-I therapy, either alone or in- combination with existing antiviral or anti-inflammatory drugs, is tested in many ongoing clinical trials to reduce COVID-19 mortality. Since signaling by the IFN-I family of molecules regulates host immune response to other infectious and non-infectious diseases, any imbalance in this family of cytokines would impact the clinical outcome of COVID-19, as well as other co-existing diseases. Therefore, it is imperative to evaluate the beneficial-versus-detrimental effects of IFN-I immunotherapy for COVID-19 patients with divergent disease severity and other co-existing conditions. This review article summarizes the role of IFN-I signaling in infectious and non-infectious diseases of humans. It highlights the precautionary measures to be considered before administering IFN-I to COVID-19 patients having other co-existing disorders. Finally, suggestions are proposed to improve IFN-I immunotherapy to COVID-19.


Cell Reports ◽  
2021 ◽  
Vol 34 (11) ◽  
pp. 108859
Author(s):  
Jessie Kulsuptrakul ◽  
Ruofan Wang ◽  
Nathan L. Meyers ◽  
Melanie Ott ◽  
Andreas S. Puschnik

Sign in / Sign up

Export Citation Format

Share Document