Operating a Train of Cryogenic Centrifugal Compressors at Lower Flow Rates and Constant Compression Ratio

1998 ◽  
pp. 651-655
Author(s):  
Guy M Gistau-Baguer
2002 ◽  
Vol 459 ◽  
pp. 317-345 ◽  
Author(s):  
Y. BERTHO ◽  
F. GIORGIUTTI-DAUPHINÉ ◽  
T. RAAFAT ◽  
E. J. HINCH ◽  
H. J. HERRMANN ◽  
...  

The dynamics of dry granular flows down a vertical glass pipe of small diameter have been studied experimentally. Simultaneous measurements of pressure profiles, air and grain flow rates and volume fractions of particles have been realized together with spatio-temporal diagrams of the grain distribution down the tube. At large grain flow rates, one observes a stationary flow characterized by high particle velocities, low particle fractions and a downflow of air resulting in an underpressure in the upper part of the pipe. A simple model assuming a free fall of the particles slowed down by air friction and taking into account finite particle fraction effects through Richardson–Zaki's law has been developed: it reproduces pressure and particle fraction variations with distance and estimates friction forces with the wall. At lower flow rates, sequences of high-density plugs separated by low-density bubbles moving down at a constant velocity are observed. The pressure is larger than outside the tube and its gradient reflects closely the weight of the grains. Writing mass and momentum conservation equations for the air and for the grains allows one to estimate the wall friction, which is less than 10% of the weight for grains with a clean smooth surface but up to 30% for grains with a rougher surface. At lower flow rates, oscillating-wave regimes resulting in large pressure fluctuations are observed and their frequency is predicted.


2021 ◽  
pp. petgeo2020-062
Author(s):  
Jingtao Zhang ◽  
Haipeng Zhang ◽  
Donghee Lee ◽  
Sangjin Ryu ◽  
Seunghee Kim

Various energy recovery, storage, conversion, and environmental operations may involve repetitive fluid injection and, thus, cyclic drainage-imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV = 0, 0.25, and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of ten injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 mL/min). The experimental results were analyzed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids, and the pressure gradient. The pattern of the invasion and displacement of nonwetting fluid converged more readily in the homogeneous model (COV = 0) as the repetitive drainage-imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became the opposite at the higher flow rate. Similarly, the residual saturation of the nonwetting fluid was largest at COV = 0 for the lower flow rate, but it was the opposite for the higher flow rate case. However, the Minkowski functionals for the boundary length and connectedness of the nonwetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this manuscript.Supplementary material: Figures S1 and S2 https://doi.org/10.6084/m9.figshare.c.5276814.Thematic collection: This article is part of the Energy Geoscience Series collection available at: https://www.lyellcollection.org/cc/energy-geoscience-series


1977 ◽  
Vol 5 (2) ◽  
pp. 146-148 ◽  
Author(s):  
A. Morton ◽  
P. Hansen ◽  
A. B. Baker

A study of flow-volume curves pre- and post-operatively demonstrated a marked difference between bronchitic and non-bronchitic patients. All bronchitic patients showed lower flow rates at low lung volumes post-operatively, when compared with their pre-operative values. Non-bronchitic patients all had higher flow rates for the same comparison.


Author(s):  
A. Whitfield ◽  
F. J. Wallace ◽  
R. C. Atkey

Two variable geometry techniques have been applied to a small turbocharger compressor, with the objective of trying to move the peak pressure ratio operating point to lower flow rates, thereby yielding a broad flow range map. Variable prewhirl guide vanes and variable vaneless diffuser passage height have been studied separately. The results obtained with both techniques are compared and the relative merits and demerits with respect to improved flow range and isentropic efficiency penalties are considered.


2020 ◽  
Vol 10 (4) ◽  
pp. 1034-1035
Author(s):  
Caetano C. Dorea

Abstract In a recent contribution by Curry and colleagues, a field-derived assessment of a reportedly common pretreatment technique to reduce turbidities of biosand filter (BSF) feed water was reported. Their results demonstrated that despite alum pretreatment achieving lower settled turbidity values relative to control filters, such intervention led to significantly lower flow rates in the alum-dosed BSFs. However, their study stopped short of providing a more meaningful interpretation to what may initially seem like a counterintuitive finding, which is presented here.


2008 ◽  
Author(s):  
Saad A. Ahmed

The operation of centrifugal compressor systems is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall or surge. These instabilities limit the flow range in which the compressor can operate. They also lower the performance and efficiency of the compressor. Experiments were conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the impeller was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to scan the steady and unsteady operating conditions of the compressor. The flow rate through the compressor was gradually decreased until flow instability is initiated at the diffuser. The flow rate was further reduced to study the characteristics of rotating stall. These measurements were reported for diffuser diameter ratios, Do/Di, of 2.0 with diffuser width ratio, b/Di, of 0.055. At lower flow rates than the critical, the rotating stall pattern with one stall cell was dominant over the pattern with two cells. In addition, the instability in the diffuser was successfully delayed to a lower flow coefficient when rough surfaces were attached to one or both sides of the diffuser with the lowest values achieved by attaching the rough surface to the shroud. Results show that the roughness has no significant effect on stall cell characteristics.


RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19089-19097 ◽  
Author(s):  
Seyedeh-Saba Ashrafmansouri ◽  
Stefan Willersinn ◽  
Mohsen Nasr Esfahany ◽  
Hans-Jörg Bart

Experiments were performed in a membrane based micro-contactor The results showed that nanoparticles are more effective on mass transfer at lower flow rates.


2008 ◽  
Vol 71 (7) ◽  
pp. 1357-1365 ◽  
Author(s):  
BRENDAN A. NIEMIRA ◽  
JOSEPH SITES

Cold plasma generated in a gliding arc was applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley on agar plates and inoculated onto the surfaces of Golden Delicious apples. This novel sanitizing technology inactivated both pathogens on agar plates, with higher flow rate (40 liters/min) observed to be more efficacious than were lower flow rates (20 liters/min), irrespective of treatment time (1 or 2 min). Golden Delicious apples were treated with various flow rates (10, 20, 30, or 40 liters/min) of cold plasma for various times (1, 2, or 3 min), applied to dried spot inoculations. All treatments resulted in significant (P < 0.05) reductions from the untreated control, with 40 liters/min more effective than were lower flow rates. Inactivation of Salmonella Stanley followed a time-dependent reduction for all flow rates. Reductions after 3 min ranged from 2.9 to 3.7 log CFU/ml, close to the limit of detection. For E. coli O157:H7, 40 liters/min gave similar reductions for all treatment times, 3.4 to 3.6 log CFU/ml. At lower flow rates, inactivation was related to exposure time, with 3 min resulting in reductions of 2.6 to 3 log CFU/ml. Temperature increase of the treated apples was related to exposure time for all flow rates. The maximum temperature of any plasma-treated apple was 50.8°C (28°C above ambient), after 20 liters/min for 3 min, indicating that antimicrobial effects were not the result of heat. These results indicate that cold plasma is a nonthermal process that can effectively reduce human pathogens inoculated onto fresh produce.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yohannes Mengesha ◽  
Abdu Tuha ◽  
Yimer Seid ◽  
Admassu Assen Adem

Natural polymers, specifically mucilages, have been used as a suspending agent for a long period of time. Natural excipients can serve as an alternative to synthetic products since they are less expensive, less toxic, and devoid of environmental pollution. There are many species of Aloe found in Ethiopia which can be used as a source of mucilage. In this study, mucilage from Aloe weloensis, which is found in Wollo floristic region, was extracted and tested as a suspending agent at different suspending agent concentrations and compared with standard suspending agents (acacia and sodium carboxy methylcellulose (NaCMC)) by formulating zinc oxide suspension. The mucilage obtained from Aloe weloensis leaves has shown comparable suspending agent ability with acacia. The rate of sedimentation and viscosity was higher at 1% and 4% mucilage concentrations than acacia though the difference was not significant ( p > 0.05 ). The suspension was slightly basic and easily dispersible than NaCMC. Suspensions formulated from NaCMC were superior in terms of viscosity and sedimentation volume which was significantly different ( p < 0.05 ) accompanied by lower flow rates than suspensions formulated from acacia and Aloe weloensis mucilages. The results suggested that Aloe weloensis mucilage could be used as an alternative suspending agent.


Sign in / Sign up

Export Citation Format

Share Document