Cold Plasma Inactivates Salmonella Stanley and Escherichia coli O157:H7 Inoculated on Golden Delicious Apples†

2008 ◽  
Vol 71 (7) ◽  
pp. 1357-1365 ◽  
Author(s):  
BRENDAN A. NIEMIRA ◽  
JOSEPH SITES

Cold plasma generated in a gliding arc was applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley on agar plates and inoculated onto the surfaces of Golden Delicious apples. This novel sanitizing technology inactivated both pathogens on agar plates, with higher flow rate (40 liters/min) observed to be more efficacious than were lower flow rates (20 liters/min), irrespective of treatment time (1 or 2 min). Golden Delicious apples were treated with various flow rates (10, 20, 30, or 40 liters/min) of cold plasma for various times (1, 2, or 3 min), applied to dried spot inoculations. All treatments resulted in significant (P < 0.05) reductions from the untreated control, with 40 liters/min more effective than were lower flow rates. Inactivation of Salmonella Stanley followed a time-dependent reduction for all flow rates. Reductions after 3 min ranged from 2.9 to 3.7 log CFU/ml, close to the limit of detection. For E. coli O157:H7, 40 liters/min gave similar reductions for all treatment times, 3.4 to 3.6 log CFU/ml. At lower flow rates, inactivation was related to exposure time, with 3 min resulting in reductions of 2.6 to 3 log CFU/ml. Temperature increase of the treated apples was related to exposure time for all flow rates. The maximum temperature of any plasma-treated apple was 50.8°C (28°C above ambient), after 20 liters/min for 3 min, indicating that antimicrobial effects were not the result of heat. These results indicate that cold plasma is a nonthermal process that can effectively reduce human pathogens inoculated onto fresh produce.

Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 575
Author(s):  
Songsirin Ruengvisesh ◽  
Chris R. Kerth ◽  
T. Matthew Taylor

Spinach and other leafy green vegetables have been linked to foodborne disease outbreaks of Escherichia coli O157:H7 and Salmonella enterica around the globe. In this study, the antimicrobial activities of surfactant micelles formed from the anionic surfactant sodium dodecyl sulfate (SDS), SDS micelle-loaded eugenol (1.0% eugenol), 1.0% free eugenol, 200 ppm free chlorine, and sterile water were tested against the human pathogens E. coli O157:H7 and Salmonella Saintpaul, and naturally occurring microorganisms, on spinach leaf surfaces during storage at 5 °C over 10 days. Spinach samples were immersed in antimicrobial treatment solution for 2.0 min at 25 °C, after which treatment solutions were drained off and samples were either subjected to analysis or prepared for refrigerated storage. Whereas empty SDS micelles produced moderate reductions in counts of both pathogens (2.1–3.2 log10 CFU/cm2), free and micelle-entrapped eugenol treatments reduced pathogens by >5.0 log10 CFU/cm2 to below the limit of detection (<0.5 log10 CFU/cm2). Micelle-loaded eugenol produced the greatest numerical reductions in naturally contaminating aerobic bacteria, Enterobacteriaceae, and fungi, though these reductions did not differ statistically from reductions achieved by un-encapsulated eugenol and 200 ppm chlorine. Micelles-loaded eugenol could be used as a novel antimicrobial technology to decontaminate fresh spinach from microbial pathogens.


1999 ◽  
Vol 62 (5) ◽  
pp. 444-450 ◽  
Author(s):  
R. L. BUCHANAN ◽  
S. G. EDELSON ◽  
R. L. MILLER ◽  
G. M. SAPERS

The extent and location of Escherichia coli O157:H7 contamination after intact apples were immersed in cold (2°C) 1% peptone water containing approximately 3 × 107 CFU/ml was assessed using four apple varieties, Golden Delicious, McIntosh, Red Delicious, and Braeburn. Room temperature and refrigerated apples were used to determine the effect of temperature differential on E. coli infiltration. The highest levels of E. coli were associated with the outer core region of the apple, followed by the skin. Apples were subsequently treated by immersing them for 1 min in 2,000 mg/liter sodium hypochlorite, followed by a 1-min tapwater rinse. This treatment reduced pathogen levels by 1- to 3-log cycles but did not eliminate the microorganism, particularly from the outer core region. While E. coli was not detected in the inner core of most apples, warm fruit immersed in cold peptone water occasionally internalized the pathogen. The frequency and extent of internalization of the pathogen was less when cold apples were immersed in cold peptone water. Subsequent dye uptake studies with Golden Delicious apples indicated that approximately 6% of warm apples immersed into a cold dye solution accumulated dye via open channels leading from the blossom end into the core region. However, dye uptake did not occur when the dye solution was warmer than the apple.


2004 ◽  
Vol 67 (10) ◽  
pp. 2274-2276 ◽  
Author(s):  
T. R. CALLAWAY ◽  
R. C. ANDERSON ◽  
G. TELLEZ ◽  
C. ROSARIO ◽  
G. M. NAVA ◽  
...  

Escherichia coli O157:H7 is a foodborne pathogenic bacterium that can reside undetected in the gastrointestinal tract of cattle because colonization by this bacterium is asymptomatic. Recent research has indicated that swine can carry and transmit this pathogen as well. The development of more advanced and sensitive detection techniques has improved the limit of detection and increased sensitivity for this important pathogen. This study was undertaken to determine the prevalence of E. coli O157 in cattle and swine in Mexico with the more sensitive detection technique of immunomagnetic bead separation. Samples (n = 60 per farm) were taken from four cattle and four swine farms (n = 240 cattle samples, n = 240 swine samples) located throughout central Mexico in October 2001. The prevalence of E. coli O157 was found to be only 1.25% on cattle farms and 2.1% on swine farms. The prevalence in cattle in this study is lower than that reported in the United States and could be related to the lower reported prevalence of E. coli O157 in humans in Mexico. However, further research is needed to verify prevalence throughout other regions of Mexico, as well as prevalence during other seasons of the year.


2015 ◽  
Vol 71 (5) ◽  
pp. 795-800 ◽  
Author(s):  
Jörgen Fidjeland ◽  
Sven-Erik Svensson ◽  
Björn Vinnerås

Source-separated blackwater from low-flush toilets contains plant-available nutrients and can be used as a fertilizer. The aim of the study was to evaluate the impact on pathogen inactivation when treating blackwater with urea and/or lime. Blackwater was spiked with Salmonella typhimurium, Escherichia coli O157, Enterococcus faecalis, and Ascaris suum eggs, and treated with urea and/or lime in concentrations up to 0.1% w/w. The bottles were kept in a storage facility (manure slurry tank) for 102 days while monitoring the pathogen concentrations. The treatment time needed to meet the requirement for Salmonella and E. coli reduction could be reduced at least six-fold. The enterococci were more persistent, and only the highest treatment doses had a significantly higher inactivation than the controls. The Ascaris egg viability was only reduced by around 50%, so higher urea/lime doses and/or longer treatment times are required to fulfill the treatment requirements of 3 log10 reductions of parasite eggs.


2015 ◽  
Vol 82 (2) ◽  
pp. 450-458 ◽  
Author(s):  
L. Han ◽  
S. Patil ◽  
D. Boehm ◽  
V. Milosavljević ◽  
P. J. Cullen ◽  
...  

ABSTRACTAtmospheric cold plasma (ACP) is a promising nonthermal technology effective against a wide range of pathogenic microorganisms. Reactive oxygen species (ROS) play a crucial inactivation role when air or other oxygen-containing gases are used. With strong oxidative stress, cells can be damaged by lipid peroxidation, enzyme inactivation, and DNA cleavage. Identification of ROS and an understanding of their role are important for advancing ACP applications for a range of complex microbiological issues. In this study, the inactivation efficacy of in-package high-voltage (80 kV [root mean square]) ACP (HVACP) and the role of intracellular ROS were investigated. Two mechanisms of inactivation were observed in which reactive species were found to either react primarily with the cell envelope or damage intracellular components.Escherichia coliwas inactivated mainly by cell leakage and low-level DNA damage. Conversely,Staphylococcus aureuswas mainly inactivated by intracellular damage, with significantly higher levels of intracellular ROS observed and little envelope damage. However, for both bacteria studied, increasing treatment time had a positive effect on the intracellular ROS levels generated.


1998 ◽  
Vol 61 (10) ◽  
pp. 1372-1374 ◽  
Author(s):  
TOMEKA L. FISHER ◽  
DAVID A. GOLDEN

Survival of Escherichia coli O157:H7 in ground Golden Delicious, Red Delicious, Rome, and Winesap apples stored at 4, 10, and 25°C was determined. E. coli O157:H7 populations were monitored for up to 18 days (4°C), 12 days (10°C), and 5 days (25°C), when mold contamination became visible. At 25°C, Red Delicious apples supported survival of E. coli O157:H7 better (P &lt; 0.05) than the other cultivars, followed by Golden Delicious and Rome apples, which were not statistically different (P &gt; 0.05). Winesap apples were the least favorable (P &lt; 0.05) for survival of E. coli O157:H7 at 25°C. E. coli O157:H7 was recovered at similar rates from Golden Delicious and Red Delicious apples, (P &gt; 0.05), but pathogen populations increased in both cultivars (P &lt; 0.05) during storage at 25°C. At 10°C, survival of E. coli O157:H7 was poorest (P &lt; 0.05) in ground Red Delicious apples, while there was no significant difference in survival of E. coli O157:H7 among ground Golden Delicious, Rome, or Winesap cultivars (P &gt; 0.05). When stored at 4°C, Golden Delicious and Rome apples were not statistically different in supporting survival of the pathogen (P &gt; 0.05) and there was no statistical difference in the recovery of E. coli O157:H7 from ground Red Delicious, Rome, and Winesap apples (P &gt; 0.05). In general, apple pH increased during storage and was associated with mold growth. Results of this investigation indicate that there is no trend toward a particular apple cultivar supporting survival of E. coli O157:H7. However, variation in apple pH during storage can negatively or positively influence E. coli O157:H7 survival at 25 °C.


2001 ◽  
Vol 64 (8) ◽  
pp. 1128-1133 ◽  
Author(s):  
Y. HAN ◽  
J. D. FLOROS ◽  
R. H. LINTON ◽  
S. S. NIELSEN ◽  
P. E. NELSON

The effects of chlorine dioxide (ClO2) gas concentration (0.1 to 0.5 mg/liter), relative humidity (RH) (55 to 95%), treatment time (7 to 135 min), and temperature (5 to 25°C) on inactivation of Escherichia coli O157:H7 on green peppers were studied using response surface methods. A four-factor, central, composite, rotatable design was used. The microbial log reduction was measured as a response. A direct membrane-surface-plating method with tryptic soy agar and sorbitol Mac-Conkey agar was used to resuscitate and enumerate ClO2-treated E. coli O157:H7 cells. The statistical analysis and the predictive model developed in this study suggest that ClO2 gas concentration, treatment time, RH, and temperature all significantly (P &lt; 0.01) increased the inactivation of E. coli O157:H7. ClO2 gas concentration was the most important factor, whereas temperature was the least significant. The interaction between ClO2 gas concentration and RH indicated a synergistic effect. The predictive model was validated, and it could be used to determine effective ClO2 gas treatments to achieve a 5-log reduction of E. coli O157:H7 on green peppers.


Sign in / Sign up

Export Citation Format

Share Document