Delay of Unsteady Flow in a Radial Diffuser

2008 ◽  
Author(s):  
Saad A. Ahmed

The operation of centrifugal compressor systems is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall or surge. These instabilities limit the flow range in which the compressor can operate. They also lower the performance and efficiency of the compressor. Experiments were conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the impeller was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to scan the steady and unsteady operating conditions of the compressor. The flow rate through the compressor was gradually decreased until flow instability is initiated at the diffuser. The flow rate was further reduced to study the characteristics of rotating stall. These measurements were reported for diffuser diameter ratios, Do/Di, of 2.0 with diffuser width ratio, b/Di, of 0.055. At lower flow rates than the critical, the rotating stall pattern with one stall cell was dominant over the pattern with two cells. In addition, the instability in the diffuser was successfully delayed to a lower flow coefficient when rough surfaces were attached to one or both sides of the diffuser with the lowest values achieved by attaching the rough surface to the shroud. Results show that the roughness has no significant effect on stall cell characteristics.

2013 ◽  
Vol 431 ◽  
pp. 155-160
Author(s):  
Saad Ahmed

The function of centrifugal blowers/compressors is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall. These instabilities limit the flow range in which they can operate. An experimental investigation was conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the blower was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to investigate the steady and unsteady flow characteristics of the diffuser. These measurements were reported for diffuser diameter ratios, Do / Di, of 1.5, 1.75 and 2.0 with diffuser width ratio, b / Di, of 0.055. The rotating stall pattern with one stall cell was dominant over the pattern with two cells which appeared at flow rates lower than the critical. In addition, the instability in the diffuser was delayed to a lower flow coefficient when rough surfaces were attached to one or both walls of the diffuser with the lowest values achieved by attaching the rough surface to the shroud wall. Results show that the roughness has no significant effect on stall cell frequencies.


Author(s):  
Saad A. Ahmed

Centrifugal compressors or blowers are widely used in many industrial applications. However, the operation of such systems is limited at low-mass flow rates by self-excited flow instabilities which could result in rotating stall or surge of the compressor. These instabilities will limit the flow range in which the compressor or the blower can operate, and will also lower their performance and efficiency. Experimental techniques were used to investigate a model of radial vaneless diffuser at stall and stall-free operating conditions. The speed of the impeller was kept constant, while the mass flow rate was reduced gradually to study the steady and unsteady operating conditions of the compressor. Additional experiments were made to investigate the effects of reducing the exit flow area on the inception of stall. The results indicate that the instability in the diffuser was successfully delayed to a lower flow coefficient when throttle rings were attached to either one or both of the diffuser walls (i.e., to reduce the diffuser exit flow area). The results also showed that an increase of the blockage ratio improves the stability of the system (i.e., the critical mass flow rate could be reduced to 50% of its value without blockage). The results indicate that the throttle rings could be an effective method to control stall in radial diffusers.


2009 ◽  
Author(s):  
Saad A. Ahmed ◽  
Mohamed Gadalla

An experimental investigation of the flow instability characteristics in a radial vaneless diffuser of a centrifugal blower was carried out. The mass flow rate of air through the diffuser could be gradually reduced to zero value. The flowfield in the diffuser was measured using dynamic and static pressure transducers and the results are reported for steady and stall conditions. The objectives of this experimental investigation are to investigate, understand, and document the effects of diffuser geometry on the inception and fundamental characteristics of rotating stall, and also to provide a benchmark set of experimental data to aid stall model development. The results of this investigation showed that the maximum number of stall cells was two. The rotating pressure pattern with one stall cell was dominant; especially, if the mass flow rate is lower than the critical value for stall inception. The speeds of stall cells increase linearly with the impeller speed and they decrease with the increase of the diameter ratio. On the other hand, the effect of diffuser width ratio on the pressure pattern frequency is insignificant; therefore, it is not presented.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


2006 ◽  
Author(s):  
Saad A. Ahemd ◽  
Hayder Salem

Flow instabilities in a compression system at low flow rates set the flow limit of the stable operating range. Experiments to investigate the feasibility of controlling the stall in the radial diffuser of a low speed centrifugal compressor were carried out. The technique was very simple and involved using rough surfaces (i.e., sand papers) attached to the diffuser shroud. The results showed that the flow instability in the diffuser (stall) was delayed to a lower flow coefficient (the mass flow rate could be reduced to 70% of its value with the smooth surface) when the rough surfaces were positioned on the diffuser shroud.


Author(s):  
A. N. Abdelhamid ◽  
J. Bertrand

Experiments were conducted to determine the characteristics of oscillating flows in a centrifugal compression system with vaneless diffusers. The system was operated without a diffuser and with eight different diffuser configurations to determine the effects of diffuser diameter and width ratios on the unsteady behavior of the system. Mean and fluctuating velocity and static pressure measurements were carried out in the time and frequency domains. The system without a diffuser was found to be stable at all operating conditions. The installation of any of the eight diffusers resulted in the generation of self-excited oscillations at some operating conditions. It was found that the critical flow coefficient at which onset of oscillations was observed increased as the diffuser width ratio was decreased and as the diameter ratio was increased. Comparison between the characteristics of the oscillations observed in the present study and those observed by other investigators indicate that rotating stall in two geometrically similar diffusers can be an order of magnitude different in the non-dimensional rotational speed and level of unsteady pressure fluctuations. These differences point towards the possibility of existence of more than one set of flow conditions which could lead to the occurrence of the unsteady phenomena.


Author(s):  
Saad A. Ahmed ◽  
Mohamed A. Gadalla

An experimental investigation to delay the onset of the rotating stall in the radial diffuser of a centrifugal blower was carried out. The method involved reducing the flow area by 50% at the diffuser exit using throttle rings attached to either diffuser shroud wall, or the diffuser hub wall. Simultaneous attachments of the throttle rings to both the diffuser’s shroud and the hub walls were also made. The following blockage ratios were used: 25% from both walls, 50% from the diffuser shroud and 0% from the diffuser hub and vice versa. The preliminary results suggest that the onset of the flow instability in the diffuser (stall) could be delayed (i.e., lower flow coefficient) when throttle rings were attached to the diffuser walls to reduce its exit flow area. The results also confirmed that the throttle rings could be an effective method to control/delay the stall in the vaneless radial diffuser.


Author(s):  
Federico M Berruti ◽  
Lorenzo Ferrante ◽  
Franco Berruti ◽  
Cedric Briens

Among many other potential applications, intermittent solid slug feeders can be used to effectively inject biomass materials into fluidized bed reactors for pyrolysis. In particular, these feeders can be used to convey biomass materials that are highly cohesive to prevent plugging or undesirable reaction in the feeding tube. Although feeders of this design have been shown to work very effectively, they have not been studied in detail or optimized for the pyrolysis process. In addition, the operating conditions required to obtain predictable and consistent mass flow rates and slugs of desirable characteristics need to be established.The purpose of this work was to design, build and demonstrate the operation of a horizontal intermittent solid slug feeder and to test it with sawdust as the feed material. Sawdust is an extremely cohesive and difficult biomass to inject, but one that holds great potential as an important renewable feedstock for pyrolysis.The intermittent feeder designed for this work consisted of a pressurized vertical solids storage silo leading to a pneumatic pinch valve. The pinch valve, controlled by solenoid valves connected to a relay timer, released the feed into a horizontal feeding tube at a ninety degree angle. Within the silo, a rotating mixer prevented the bridging of solids. Intermittent pulses of gas from a control volume were fed into the horizontal feeding tube, as well as, in some cases, a continuous gas flow. The timing of the pulses was controlled by solenoid valves with a relay timer. While the pinch valve is opened, solids fall into the horizontal feeding tube forming a plug, which is then propelled by the pulsating gas into the reactor. The solid mass flow rate was experimentally measured by collecting the solids and continuously measuring the mass using a digital balance.Several variables were tested in order to optimize the performance of the feeder and the consistency of the feeding rate. They included the silo pressure, mixing rate, gas pulse pressure and volume, continuous gas mass flow rate, and the open pinch-valve time interval. The goals of this optimization were (a) to maximize the solid-to-gas ratio of mass flow rates, since the gas mass flux must be minimized to avoid wasting energy, and (b) to define operating conditions required to inject consistent biomass mass flow rates suitable for a laboratory scale pyrolysis reactor, and (c) to propose initial design criteria and a calibration procedure for intermittent solid slug feeders.The results demonstrated that the intermittent solid slug feeder system successfully achieved the desired objectives and showed how to efficiently select its optimum operating conditions.


Author(s):  
Taher Halawa ◽  
Mohamed Alqaradawi ◽  
Osama Badr ◽  
Mohamed S. Gadala

This paper focuses on providing better view for the understanding of rotating stall phenomenon in centrifugal compressors by using numerical simulations and presents a study of the role of air injection method in delaying stall inception by using different injection parameters aiming at increasing the efficiency of this method. Results showed that the formation of stall begins at the impeller inlet due to early flow separation at low mass flow rates and due to the increase of the turbulence level and the absence of fluid orientation guidance at the vaneless region. The flow weakness causes back flow that results in the formation of the tip leakage flow which causes stall development with time. Results also showed that using air injection at specified locations at the vaneless shroud surface at injection angle of 20° and with injection mass flow rate of 1.5% of the inlet design mass flow rate, can delay the stall onset to happen at lower mass flow rate about 3.8 kg/s comparing with using injection with angle of 10° with different injection mass flow rates and also comparing with the case of no injection.


Sign in / Sign up

Export Citation Format

Share Document