Preoperative Planning

Author(s):  
Arun B. Mullaji ◽  
Gautam M. Shetty
2020 ◽  
Vol 132 (5) ◽  
pp. 1642-1652 ◽  
Author(s):  
Timothee Jacquesson ◽  
Fang-Chang Yeh ◽  
Sandip Panesar ◽  
Jessica Barrios ◽  
Arnaud Attyé ◽  
...  

OBJECTIVEDiffusion imaging tractography has allowed the in vivo description of brain white matter. One of its applications is preoperative planning for brain tumor resection. Due to a limited spatial and angular resolution, it is difficult for fiber tracking to delineate fiber crossing areas and small-scale structures, in particular brainstem tracts and cranial nerves. New methods are being developed but these involve extensive multistep tractography pipelines including the patient-specific design of multiple regions of interest (ROIs). The authors propose a new practical full tractography method that could be implemented in routine presurgical planning for skull base surgery.METHODSA Philips MRI machine provided diffusion-weighted and anatomical sequences for 2 healthy volunteers and 2 skull base tumor patients. Tractography of the full brainstem, the cerebellum, and cranial nerves was performed using the software DSI Studio, generalized-q-sampling reconstruction, orientation distribution function (ODF) of fibers, and a quantitative anisotropy–based generalized deterministic algorithm. No ROI or extensive manual filtering of spurious fibers was used. Tractography rendering was displayed in a tridimensional space with directional color code. This approach was also tested on diffusion data from the Human Connectome Project (HCP) database.RESULTSThe brainstem, the cerebellum, and the cisternal segments of most cranial nerves were depicted in all participants. In cases of skull base tumors, the tridimensional rendering permitted the visualization of the whole anatomical environment and cranial nerve displacement, thus helping the surgical strategy.CONCLUSIONSAs opposed to classical ROI-based methods, this novel full tractography approach could enable routine enhanced surgical planning or brain imaging for skull base tumors.


Author(s):  
Andrew Lawrence Callen ◽  
Ryan K. Badiee ◽  
Andrew Phelps ◽  
Valeria Potigailo ◽  
Eric Wang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Y. Knafo ◽  
F. Houfani ◽  
B. Zaharia ◽  
F. Egrise ◽  
I. Clerc-Urmès ◽  
...  

Two-dimensional (2D) planning on standard radiographs for total hip arthroplasty may not be sufficiently accurate to predict implant sizing or restore leg length and femoral offset, whereas 3D planning avoids magnification and projection errors. Furthermore, weightbearing measures are not available with computed tomography (CT) and leg length and offset are rarely checked postoperatively using any imaging modality. Navigation can usually achieve a surgical plan precisely, but the choice of that plan remains key, which is best guided by preoperative planning. The study objectives were therefore to (1) evaluate the accuracy of stem/cup size prediction using dedicated 3D planning software based on biplanar radiographic imaging under weightbearing and (2) compare the preplanned leg length and femoral offset with the postoperative result. This single-centre, single-surgeon prospective study consisted of a cohort of 33 patients operated on over 24 months. The routine clinical workflow consisted of preoperative biplanar weightbearing imaging, 3D surgical planning, navigated surgery to execute the plan, and postoperative biplanar imaging to verify the radiological outcomes in 3D weightbearing. 3D planning was performed with the dedicated hipEOS® planning software to determine stem and cup size and position, plus 3D anatomical and functional parameters, in particular variations in leg length and femoral offset. Component size planning accuracy was 94% (31/33) within one size for the femoral stem and 100% (33/33) within one size for the acetabular cup. There were no significant differences between planned versus implanted femoral stem size or planned versus measured changes in leg length or offset. Cup size did differ significantly, tending towards implanting one size larger when there was a difference. Biplanar radiographs plus hipEOS planning software showed good reliability for predicting implant size, leg length, and femoral offset and postoperatively provided a check on the navigated surgery. Compared to previous studies, the predictive results were better than 2D planning on conventional radiography and equal to 3D planning on CT images, with lower radiation dose, and in the weightbearing position.


Author(s):  
Veenesh Selvaratnam ◽  
Andrew Cattell ◽  
Keith S. Eyres ◽  
Andrew D. Toms ◽  
Jonathan R. P. Phillips ◽  
...  

AbstractPatello-femoral arthroplasty (PFA) is successful in a selected group of patients and yields a good functional outcome. Robotic-assisted knee arthroplasty has been shown to provide better implant positioning and alignment. We aim to report our early outcomes and to compare Mako's (Robotic Arm Interactive Orthopaedic System [RIO]) preoperative implant planning position to our intraoperative PFA implant position. Data for this study was prospectively collected for 23 (two bilateral) patients who underwent robotic-assisted PFA between April 2017 and May 2018. All preoperative implant position planning and postoperative actual implant position were recorded. Presence of trochlear dysplasia and functional outcome scores were also collected. There were 17 (two bilateral) female and 6 male patients with a mean age of 66.5 (range: 41–89) years. The mean follow-up period was 30 (range: 24–37) months. Eighteen knees (72%) had evidence of trochlear dysplasia. The anterior trochlear line was on average, 7.71 (range: 3.3–11.3) degrees, internally rotated to the surgical transepicondylar axis and on average 2.9 (range: 0.2–6.5) degrees internally rotated to the posterior condylar line. The preoperative planning range was 4-degree internal to 4-degree external rotation, 4-degree varus to 6-degree valgus, and 7-degree flexion to 3-degree extension. The average difference between preoperative planning and intraoperative implant position was 0.43 degrees for rotation (r = 0.93), 0.99 degrees for varus/valgus (r = 0.29), 1.26 degrees for flexion/extension (r = 0.83), and 0.34 mm for proudness (r = 0.80). Six patients (24%) had a different size component from their preoperative plan (r = 0.98). The mean preoperative Oxford Knee Score (OKS) was 16 and the mean postoperative OKS was 42. No patient had implant-related revision surgery or any radiological evidence of implant loosening at final follow-up. Our early results of robotic PFA are promising. Preoperative Mako planning correlates closely with intraoperative implant positioning. Longer follow-up is needed to assess long-term patient outcomes and implant survivorship.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuetao Zhou ◽  
Dongsheng Zhang ◽  
Zexin Xie ◽  
Yang Yang ◽  
Menghui Chen ◽  
...  

Abstract Objective To explore the clinical effect of 3D printing combined with framework internal fixation technology on the minimally invasive internal fixation of high complex rib fractures. Methods Total 16 patients with high complex rib fractures were included in the study. Before the procedure, the 3D rib model was reconstructed based on the thin-layer chest CT scan. According to the 3D model, the rib locking plate was pre-shaped, and the preoperative planning were made including the direction of the locking plate, the location of each nail hole and the length of the screw. During the operation, the locking plate was inserted from the sternum to the outermost fracture lines of ribs with screws at both ends. In addition, the locking plate was used as the frame to sequentially reduce the middle fracture segment and fix with screws or steel wires. Chest x-rays or chest CT scans after surgery were used to assess the ribs recovery. All patients were routinely given non-steroidal anti-inflammatory drugs (NSAIDS) for analgesia, and the pain level was evaluated using numerical rating scale (NRS). Results The preoperative planning according to the 3D printed rib model was accurate. The reduction and fixation of each fracture segment were successfully completed through the framework internal fixation technology. No cases of surgical death, and postoperative chest pain was significantly alleviated. Five to 10 months follow up demonstrated neither loosening of screws, nor displacement of fixtures among patients. The lungs of each patients were clear and in good shape. Conclusion The application of 3D printing combined with framework internal fixation technology to the high complex rib fractures is beneficial for restoring the inherent shape of the thoracic cage, which can realize the accurate and individualized treatment as well as reduces the operation difficulty.


Author(s):  
Aurora G. Vincent ◽  
Anne E. Gunter ◽  
Yadranko Ducic ◽  
Likith Reddy

AbstractAlloplastic facial transplantation has become a new rung on the proverbial reconstructive ladder for severe facial wounds in the past couple of decades. Since the first transfer including bony components in 2006, numerous facial allotransplantations across many countries have been successfully performed, many incorporating multiple bony elements of the face. There are many unique considerations to facial transplantation of bone, however, beyond the considerations of simple soft tissue transfer. Herein, we review the current literature and considerations specific to bony facial transplantation focusing on the pertinent surgical anatomy, preoperative planning needs, intraoperative harvest and inset considerations, and postoperative protocols.


2020 ◽  
Vol 1 (1) ◽  
pp. 62-70
Author(s):  
Amir H Sadeghi ◽  
Wouter Bakhuis ◽  
Frank Van Schaagen ◽  
Frans B S Oei ◽  
Jos A Bekkers ◽  
...  

Abstract Aims Increased complexity in cardiac surgery over the last decades necessitates more precise preoperative planning to minimize operating time, to limit the risk of complications during surgery and to aim for the best possible patient outcome. Novel, more realistic, and more immersive techniques, such as three-dimensional (3D) virtual reality (VR) could potentially contribute to the preoperative planning phase. This study shows our initial experience on the implementation of immersive VR technology as a complementary research-based imaging tool for preoperative planning in cardiothoracic surgery. In addition, essentials to set up and implement a VR platform are described. Methods Six patients who underwent cardiac surgery at the Erasmus Medical Center, Rotterdam, The Netherlands, between March 2020 and August 2020, were included, based on request by the surgeon and availability of computed tomography images. After 3D VR rendering and 3D segmentation of specific structures, the reconstruction was analysed via a head mount display. All participating surgeons (n = 5) filled out a questionnaire to evaluate the use of VR as preoperative planning tool for surgery. Conclusion Our study demonstrates that immersive 3D VR visualization of anatomy might be beneficial as a supplementary preoperative planning tool for cardiothoracic surgery, and further research on this topic may be considered to implement this innovative tool in daily clinical practice. Lay summary Over the past decades, surgery on the heart and vessels is becoming more and more complex, necessitating more precise and accurate preoperative planning. Nowadays, operative planning is feasible on flat, two-dimensional computer screens, however, requiring a lot of spatial and three-dimensional (3D) thinking of the surgeon. Since immersive 3D virtual reality (VR) is an upcoming imaging technique with promising results in other fields of surgery, we aimed in this study to explore the additional value of this technique in heart surgery. Our surgeons planned six different heart operations by visualizing computed tomography scans with a dedicated VR headset, enabling them to visualize the patient’s anatomy in an immersive and 3D environment. The outcomes of this preliminary study are positive, with a much more reality-like simulation for the surgeon. In such, VR could potentially be beneficial as a preoperative planning tool for complex heart surgery.


2021 ◽  
pp. 219256822199837
Author(s):  
Juan Pablo Sardi ◽  
Christopher P. Ames ◽  
Skye Coffey ◽  
Christopher Good ◽  
Benny Dahl ◽  
...  

Study Design: Biomechanical Study. Objective: The search for optimal spinal alignment has led to the development of sophisticated formulas and software for preoperative planning. However, preoperative plans are not always appropriately executed since rod contouring during surgery is often subjective and estimated by the surgeon. We aimed to assess whether rods contoured to specific angles with a French rod bender using a template guide will be more accurate than rods contoured without a template. Methods: Ten experienced spine surgeons were requested to contour two 125 × 5.5 mm Ti64 rods to 40°, 60° and 80° without templates and then 2 more rods using 2D metallic templates with the same angles. Rod angles were then measured for accuracy and compared. Results: Average angles for rods bent without a template to 40°, 60° and 80° were 60.2°, 78.9° and 97.5°, respectively. Without a template, rods were overbent by a mean of 18.9°. When using templates of 40°, 60° and 80°, mean bend angles were 41.5°, 59.1° and 78.7°, respectively, with an average underbend of 0.2°. Differences between the template and non-template groups for each target angle were all significant (p < 0.001). Conclusions: Without the template, surgeons tend to overbend rods compared to the desired angle, while surgeons improved markedly with a template guide. This tendency to overbend could have significant impact on patient outcomes and risk of proximal junctional failure and warrants further research to better enable surgeons to more accurately execute preoperative alignment plans.


2021 ◽  
Vol 6 ◽  
pp. 247275122110205
Author(s):  
Sebastian Rios ◽  
María Isabel Falguera-Uceda ◽  
Alicia Dean ◽  
Susana Heredero

Study Design: Suprafascial free flaps have become common place in reconstructive surgery units. Nomenclature related to these flaps has not been uniform throughout the scientific literature, especially in regard to planes of dissection. This study is designed as a comprehensive review of the literature. Objectives: Our study highlights which flaps are used most frequently, their main indications, their survival rate, and how they have evolved in the last few decades as innovations have been introduced. Methods: A review of the literature was performed using keywords and Medical Subject Headings search terms. PubMed, Embase, and Cochrane Library were searched using the appropriate search terms. Data collected from each study included flap type, dissection plane, preoperative planning, area of reconstruction, as well as complications, donor-site morbidity and survival rate. Results: Seven hundred and fifty-five studies were found based on the search criteria. After full-text screening for inclusion and exclusion criteria 34 studies were included. A total of 1332 patients were comprised in these studies. The most common types of flaps used were superficial circumflex iliac perforator flap (SCIP), anterolateral thigh flap (ALT), and radial forearm flap. The most common areas of reconstruction were head & neck and limbs. There was no significant difference in survival rates between flaps that were raised in different planes of dissection. Conclusions: Based on the author’s review of the literature, suprafascial flaps are reliable, they have low donor site morbidity, and there is a wide selection available for harvest. The use of new technologies for preoperative planning, such as CT-Angiography and UHF ultrasound, have contributed to have more predictable results. We propose a standardized classification for these flaps, in order to create a uniform nomenclature for future reference.


Author(s):  
Darwin Kaushal ◽  
Amit Goyal ◽  
Kapil Soni ◽  
Bikram Choudhury ◽  
Nithin Prakasan Nair ◽  
...  

Abstract Introduction Airway foreign bodies are emergencies involving multidisciplinary departments like Pediatrics, Aneasthesiology and Otorhinolaryngology. It is always a challenge to diagnose and manage patients who present late to our emergencies. Objective In the present study, we aim to analyze the various challenges faced during the management of tracheobronchial foreign bodies with delayed presentation. Methods A retrospective hospital record-based analysis of patients who presented to us with tracheobronchial foreign bodies from January 2017 to February 2020 was performed. All patients until the age of 16 years old were included in the present study. We assessed the demographics, preoperative, intraoperative and postoperative data of the patients. Results Seventeen patients were analyzed in the study. Among these, 44.4% of the patients had delayed presentation (> 1 month). The majority of the patients had an organic foreign body (Supari or betel nut). All patients underwent rigid bronchoscopy, followed by optical forceps-assisted removal of the foreign body. A total of 82% of the patients had granulations around the foreign body. Conclusion Management of delayed presentation tracheobronchial foreign body is a big challenge for Otorhinolaryngologists. The key factors for preventing complications in the definitive management of tracheobronchial foreign bodies are preoperative planning, multi-discipline teamwork, surgeon expertise and technique.


Sign in / Sign up

Export Citation Format

Share Document