Stem Cells and Their Use in Skeletal Tissue Repair

Author(s):  
Laura Baumgartner ◽  
Vuk Savkovic ◽  
Susanne Trettner ◽  
Colette Martin ◽  
Nicole I. zur Nieden

2009 ◽  
Vol 218 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Agnieszka Arthur ◽  
Andrew Zannettino ◽  
Stan Gronthos


2013 ◽  
pp. 82-102 ◽  
Author(s):  
Agnieszka Arthur ◽  
Andrew Zannettino ◽  
Stan Gronthos




2013 ◽  
Vol 20 (28) ◽  
pp. 3429-3447 ◽  
Author(s):  
Stefania Pagliari ◽  
Sara Romanazzo ◽  
Diogo Mosqueira ◽  
Perpetua Pinto-do-O ◽  
Takao Aoyagi ◽  
...  


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  


2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.



2021 ◽  
Vol 30 ◽  
pp. 096368972199621
Author(s):  
Hong-Meng Chuang ◽  
Li-Ing Ho ◽  
Horng-Jyh Harn ◽  
Ching-Ann Liu

COVID-19 has spread worldwide, including the United States, United Kingdom, and Italy, along with its site of origin in China, since 2020. The virus was first found in the Wuhan seafood market at the end of 2019, with a controversial source. The clinical symptoms of COVID-19 include fever, cough, and respiratory tract inflammation, with some severe patients developing an acute and chronic lung injury, such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF). It has already claimed approximately 300 thousand human lives and the number is still on the rise; the only way to prevent the infection is to be safe till vaccines and reliable treatments develop. In previous studies, the use of mesenchymal stem cells (MSCs) in clinical trials had been proven to be effective in immune modulation and tissue repair promotion; however, their efficacy in treating COVID-19 remains underestimated. Here, we report the findings from past experiences of SARS and MSCs, and how SARS could also induce PF. Such studies may help to understand the rationale for the recent cell-based therapies for COVID-19.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kai-Yang Wang ◽  
Xiang-Yun Jin ◽  
Yu-Hui Ma ◽  
Wei-Jie Cai ◽  
Wei-Yuan Xiao ◽  
...  

Abstract Background Cartilage injury and pathological degeneration are reported in millions of patients globally. Cartilages such as articular hyaline cartilage are characterized by poor self-regeneration ability due to lack of vascular tissue. Current treatment methods adopt foreign cartilage analogue implants or microfracture surgery to accelerate tissue repair and regeneration. These methods are invasive and are associated with the formation of fibrocartilage, which warrants further exploration of new cartilage repair materials. The present study aims to develop an injectable modified gelatin hydrogel. Method The hydrogel effectively adsorbed proteoglycans secreted by chondrocytes adjacent to the cartilage tissue in situ, and rapidly formed suitable chondrocyte survival microenvironment modified by ε-poly-L-lysine (EPL). Besides, dynamic covalent bonds were introduced between glucose and phenylboronic acids (PBA). These bonds formed reversible covalent interactions between the cis−diol groups on polyols and the ionic boronate state of PBA. PBA-modified hydrogel induced significant stress relaxation, which improved chondrocyte viability and cartilage differentiation of stem cells. Further, we explored the ability of these hydrogels to promote chondrocyte viability and cartilage differentiation of stem cells through chemical and mechanical modifications. Results In vivo and in vitro results demonstrated that the hydrogels exhibited efficient biocompatibility. EPL and PBA modified GelMA hydrogel (Gel-EPL/B) showed stronger activity on chondrocytes compared to the GelMA control group. The Gel-EPL/B group induced the secretion of more extracellular matrix and improved the chondrogenic differentiation potential of stem cells. Finally, thus hydrogel promoted the tissue repair of cartilage defects. Conclusion Modified hydrogel is effective in cartilage tissue repair.



2006 ◽  
Vol 16 (4) ◽  
pp. 103-108 ◽  
Author(s):  
A SCHOBER ◽  
E KARSHOVSKA ◽  
A ZERNECKE ◽  
C WEBER


Sign in / Sign up

Export Citation Format

Share Document