Machine Learning Based Recommendation Systems for the Mode of Childbirth

Author(s):  
Md. Kowsher ◽  
Nusrat Jahan Prottasha ◽  
Anik Tahabilder ◽  
Md. Babul Islam
2020 ◽  
Author(s):  
Uzair Bhatti

BACKGROUND In the era of health informatics, exponential growth of information generated by health information systems and healthcare organizations demands expert and intelligent recommendation systems. It has become one of the most valuable tools as it reduces problems such as information overload while selecting and suggesting doctors, hospitals, medicine, diagnosis etc according to patients’ interests. OBJECTIVE Recommendation uses Hybrid Filtering as one of the most popular approaches, but the major limitations of this approach are selectivity and data integrity issues.Mostly existing recommendation systems & risk prediction algorithms focus on a single domain, on the other end cross-domain hybrid filtering is able to alleviate the degree of selectivity and data integrity problems to a better extent. METHODS We propose a novel algorithm for recommendation & predictive model using KNN algorithm with machine learning algorithms and artificial intelligence (AI). We find the factors that directly impact on diseases and propose an approach for predicting the correct diagnosis of different diseases. We have constructed a series of models with good reliability for predicting different surgery complications and identified several novel clinical associations. We proposed a novel algorithm pr-KNN to use KNN for prediction and recommendation of diseases RESULTS Beside that we compared the performance of our algorithm with other machine algorithms and found better performance of our algorithm, with predictive accuracy improving by +3.61%. CONCLUSIONS The potential to directly integrate these predictive tools into EHRs may enable personalized medicine and decision-making at the point of care for patient counseling and as a teaching tool. CLINICALTRIAL dataset for the trials of patient attached


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


Author(s):  
Gandhali Malve ◽  
Lajree Lohar ◽  
Tanay Malviya ◽  
Shirish Sabnis

Today the amount of information in the internet growth very rapidly and people need some instruments to find and access appropriate information. One of such tools is called recommendation system. Recommendation systems help to navigate quickly and receive necessary information. Many of us find it difficult to decide which movie to watch and so we decided to make a recommender system for us to better judge which movie we are more likely to love. In this project we are going to use Machine Learning Algorithms to recommend movies to users based on genres and user ratings. Recommendation system attempt to predict the preference or rating that a user would give to an item.


2020 ◽  
Vol 309 ◽  
pp. 03010
Author(s):  
Weishan Zeng

Effort has been done to optimize machine learning algorithms by applying relevant knowledges in data fields in recommendation systems. Ways are explored to discover the relationship of features independently, making the model more effective and robust. A new model, DSSMFM is proposed in this paper which combines user and item features interactions to improve the performance of recommendation systems. In this model, data are divided into user features and item features represented by one-hot vectors. The pre-training for the model is proceeded through FM, and implicit vectors are obtained for both user and item features. The implicit vectors are used as the input of DSSM, and the training of the DSSM part of the model will maximize the cosine distances of the user attributes vectors and the item attributes vectors. According to the experimental results on dataset of ICME 2019 Short Video Understanding and Recommendation Challenge, the model shows improvements on some results of the baselines.


Author(s):  
Flávia Gonçalves Fernandes ◽  
Eder Manoel De Santana

Machine learning and recommendation systems are tools used to improve the search indices of the most relevant items in large amounts of data that can be applied in the health area. To present a systematic mapping in the area of neurorehabilitation that uses machine learning. Analyze the references of the work carried out involving the theme on the application of machine learning in the area of neurorehabilitation. Search for studies enrolled in databases through logical operators for the selection of peer-reviewed journal articles. In addition, it was verified that the application of the systematic mapping in the elaboration of the bibliographic review allows to identify the main gaps for the development of new research, and to direct to the main publications related to the study. Therefore, it is necessary to promote this area of research to offer this public access to the techniques of neuro-rehabilitation as a form of treatment, acquisition of knowledge, motivation or even inclusion. In this way, it will be possible to obtain a greater maturity in the obtained results and, thus, to promote a systematization in the use of neuro-rehabilitation in the promotion of the well-being of these people.  


2019 ◽  
Vol 13 ◽  
pp. 267-271
Author(s):  
Jacek Bielecki ◽  
Oskar Ceglarski ◽  
Maria Skublewska-Paszkowska

Recommendation systems are class of information filter applications whose main goal is to provide personalized recommendations. The main goal of the research was to compare two ways of creating personalized recommendations. The recommendation system was built on the basis of a content-based cognitive filtering method and on the basis of a collaborative filtering method based on user ratings. The conclusions of the research show the advantages and disadvantages of both methods.


2021 ◽  
Vol 23 (08) ◽  
pp. 173-180
Author(s):  
Vivek Kumar Singh ◽  
◽  
Shruthi E Karnam ◽  
Bhagyashri R Hanji ◽  
◽  
...  

Many e-commerce websites use recommendation systems to recommend products to users to boost sales and user experience. These recommendations do not always come from the same recommendation engine. Websites can use multiple recommender models that use different machine learning algorithms and neural networks to compute these recommendations. There arises a need for a machine learning pipeline that will help orchestrate all the steps required to compute and display recommendations. The pipeline handles training a model using content-based approach, storing it with required metadata, loading it, precomputing recommendations, collecting user metrics, analysing the metrics and retraining the models with updated hyperparameters if required. Without a pipeline to automate and streamline the process, much of the work must be done manually.


Sign in / Sign up

Export Citation Format

Share Document