Saalian Cold Stage

Keyword(s):  
Author(s):  
E. P. Abrahamson II ◽  
M. W. Dumais

In a transmission microscopy study of iron and dilute iron base alloys, it was determined that it is possible to preserve specimens for extended periods of time. Our specimens were prepunched from 5 to 8 mil sheet to microscope size and annealed for several hours at 700°C. They were then thinned in a glacial acetic-12 percent perchloric acid solution using 10 volts and 20 milliamperes, at a temperature of 8 to 14°C.It was noted that by the use of a cold stage, the same specimen can be observed for periods up to one week without excess contamination. When removal of the specimen from the column becomes necessary, it was observed that a specimen may be kept for later observation in 1,2 dichloroethene or methanol for periods in excess of two weeks.


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Tokio Nei ◽  
Haruo Yotsumoto ◽  
Yoichi Hasegawa ◽  
Yuji Nagasawa

In order to observe biological specimens in their native state, that is, still containing their water content, various methods of specimen preparation have been used, the principal two of which are the chamber method and the freeze method.Using its recently developed cold stage for installation in the pre-evacuation chamber of a scanning electron microscope, we have succeeded in directly observing a biological specimen in its frozen state without the need for such conventional specimen preparation techniques as drying and metallic vacuum evaporation. (Echlin, too, has reported on the observation of surface structures using the same freeze method.)In the experiment referred to herein, a small sliced specimen was place in the specimen holder. After it was rapidly frozen by freon cooled with liquid nitrogen, it was inserted into the cold stage of the specimen chamber.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


Author(s):  
Zhang zhaohua ◽  
Luo Dong ◽  
Guo Yisong

Since early 1970's the use of cold stage on SEM for observation of hydrated samples in their natural state has become more and more popular despite its high cost. Experiences gained from earlier experiments indicate that a successful design should incorporate thefollowing features:1. The specimen temperature should be below −135°C (the recrystallization point of water), lower the temperature, better the results.2. The frozen specimen, the cold block in the specimen preparation chamber, as well as the cold stage should be kept under vacuum at all times to keep them frost free.3. Different specimen preparation processes such as fracturing, coating and sublimation should be possible in one compact preparation chamber .


Author(s):  
E.T. O’Toole ◽  
G.P. Wray ◽  
J.R. Kremer ◽  
J.R. Mcintosh

Ultrarapid freezing and cryomicroscopy of frozen hydrated material makes it possible to visualize samples that have never been exposed to chemical fixatives, dehydration, or stains. In principle, freezing and cryoimaging methods avoid artifacts associated with chemical fixation and processing and allow one to visualize the specimen in a condition that is close to its native state. Here we describe a way to use a high voltage electron microscope (HVEM) for the cryoimaging of frozen hydrated PTK1 cells.PTK1 cells were cultured on formvar-coated, carbon stabilized gold grids. After three days in culture, the grids were removed from the culture medium and blotted in a humidity chamber at 35° C. In some instances, the grids were rinsed briefly in 0.16 M ammonium acetate buffer (pH 7.2) prior to blotting. After blotting, the grids were transferred to a plunging apparatus and plunged into liquid ethane held directly above its freezing point. The plunging apparatus consists of a vertical slide rail that guides the fall of a mounted pair of forceps that clamp the specimen. The forceps are surrounded by a plexiglass humidity chamber mounted over a dewar of liquid nitrogen containing an ethane chamber. After freezing, the samples were transferred to liquid nitrogen and viewed in a JEOL JEM 1000 equipped with a top entry cold stage designed and built by Mr. George Wray (Univ. Colorado). The samples were routinely exposed to electron doses of 1 e/Å2/sec, and viewed at a temperature of −150° C. A GATAN video system was used to enhance contrast and to estimate the correct amount of underfocus needed to obtain phase contrast at various magnifications. Low dose micrographs were taken using two second exposures of Kodak 4463 film. The state of the solid water in the specimen was determined by diffraction using a 30/μm field limiting aperture and a camera length of 1 meter.


Sign in / Sign up

Export Citation Format

Share Document