Design and Analysis of Cable-Driven Parallel Robot CaRISA: A Cable Robot for Inspecting and Scanning Artwork

Author(s):  
Philipp Tempel ◽  
Matthias Alfeld ◽  
Volkert van der Wijk
Keyword(s):  
2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1513-1537 ◽  
Author(s):  
Moharam Habibnejad Korayem ◽  
Mahdi Yousefzadeh ◽  
Hami Tourajizadeh

SUMMARYIn this paper, a new mobile cable-driven parallel robot is proposed by mounting a spatial cable robot on a wheeled mobile robot. This system includes all the advantages of cable robots such as high ratio of payload to weight and good stiffness and accuracy while its deficiency of limited workspace is eliminated by the aid of its mobile chassis. The combined system covers a vast workspace area whereas it has negligible vibrations and cable sag due to using shorter cables. The dynamic equations are derived using Gibbs–Appell formulation considering viscoelasticity of the cables. Therefore, the more realistic viscoelastic cable model of the robot reveals the system flexibility effect and shows the requirements needed to control the end-effector in the conditions with cable elasticity. The viscoelastic system stability is investigated based on the input–output feedback linearization and using only the actuators feedback data. Feedback linearization controller is equipped by two additional controllers, that is, the optimal controller based on Linear Quadratic Regulator (LQR) method and finite horizon model predictive approach. They are used to control the system compromising between the control effort and error signals of the feedback linearized system. The applied control input to the robot plant is the voltage signal limited to a specified band. The validity of modeling and the designed controller efficiency are investigated using MATLAB simulation and its verification is accomplished by experimental tests conducted on the manufactured cable robot, ICaSbot.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 887-904 ◽  
Author(s):  
M. H. Korayem ◽  
M. Bamdad ◽  
H. Tourajizadeh ◽  
A. H. Korayem ◽  
R. M. Zehtab ◽  
...  

SUMMARYIn this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.


Author(s):  
Se´bastien Krut ◽  
Nacim Ramdani ◽  
Marc Gouttefarde ◽  
Olivier Company ◽  
Franc¸ois Pierrot

This paper introduces a lower mobility parallel kinematic crane able to generate Scara motions (three translations and one rotation about a vertical axis). A crane is an underconstrained cable robot: it requires gravity acting on the traveling plate in order to tense the cables. The proposed crane can resist, to a certain extent, against outside forces and torques in all directions of the 6-dimensional task space. This feature results from the use of pairs of cables linking the actuators and the traveling plate. The proposed crane is derived from the I4 parallel robot. Thus, its traveling plate is articulated which provides a wide range of orientation. It is hyperstatic in the sense that one of the eight cables can be removed while keeping the same kinematic relationships. However, for symmetry reasons all the eight cables are kept (this feature is interesting in case of a cable breakdown). The input/output geometrical and kinematic models required for control are derived. Then, the cables tensions are obtained enabling the determination of the static workspace defined as the domain of reachable space where the cables remain taut under the action of gravity.


Author(s):  
Jinwoo Jung ◽  
Jinlong Piao ◽  
Eunpyo Choi ◽  
Jong-Oh Park ◽  
Chang-Sei Kim

Abstract A cable-driven parallel robot (CDPR) consists of an end-effector, flexible lightweight cables, pulleys, winches, and a rigid base frame. As opposed to the rigid links of the traditional serial robots and parallel robots, the flexible lightweight cables allow the CDPR to easily achieve the high speed, heavy payload manipulation, and scalable workspace. Especially, the conventional high-speed pick and place operation can be realized due to the lightweight of its flexible cables. However, the flexibility of the lightweight cables can introduce a considerable vibration problem to the high speed cable robot system. One of main causes can be a cable tension difference between initial pre-tension and winding tension around a drum of the winch-motor actuator. To effectively investigate the effect of the tension around the drum on the high speed manipulation of the cable robot system, the spatial eight-cable high speed cable robot was reduced to the horizontal two cable system. The reduction of the number of the cable enables us to minimize the influences from the other factors such as the cable sagging and the geometric errors. A series of experiments was conducted using the combinations of the low and high initial pre-tensions and low and high tensions around the drum. The experimental results clearly show that the low tension around the drum can cause the vibration problem during the high speed pick and place operation. Also, it demonstrates that securing the drum tension similar to the initial pre-tension can effectively reduce the magnitude of the vibration.


Author(s):  
Hyundong Do ◽  
Kyoung-Su Park

Cable-driven parallel robot (CDPR) consists of three parts: an end-effector, a number of cables and actuators. CDPRs are a type of parallel manipulators which the end-effector is supported in parallel by cables. CDPRs have two types. One is the fully-constrained type, and the other is the under constrained type. Fully-constrained type cable robot require n+1 wires, where n is the number of freedom to be constrained [1].


Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Ferdaws Ennaiem ◽  
Abdelbadiâ Chaker ◽  
Juan Sebastián Sandoval Arévalo ◽  
Med Amine Laribi ◽  
Sami Bennour ◽  
...  

This paper deals with the design of an optimal cable-driven parallel robot (CDPR) for upper limb rehabilitation. The robot’s prescribed workspace is identified with the help of an occupational therapist based on three selected daily life activities, which are tracked using a Qualisys motion capture system. A preliminary architecture of the robot is proposed based on the analysis of the tracked trajectories of all the activities. A multi-objective optimization process using the genetic algorithm method is then performed, where the cable tensions and the robot size are selected as the objective functions to be minimized. The cables tensions are bounded between two limits, where the lower limit ensures a positive tension in the cables at all times and the upper limit represents the maximum torque of the motor. A sensitivity analysis is then performed using the Monte Carlo method to yield the optimal design selected out of the non-dominated solutions, forming the obtained Pareto front. The robot with the highest robustness toward the disturbances is identified, and its dexterity and elastic stiffness are calculated to investigate its performance.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 303-323
Author(s):  
Amjad J Humaidi ◽  
Huda T Najem ◽  
Ayad Q Al-Dujaili ◽  
Daniel A Pereira ◽  
Ibraheem Kasim Ibraheem ◽  
...  

This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.


Sign in / Sign up

Export Citation Format

Share Document