scholarly journals Study of Dynamics of Block-Media in the Framework of Minimalistic Numerical Models

Author(s):  
Alexander E. Filippov ◽  
Valentin L. Popov

AbstractOne of the principal methods of preventing large earthquakes is stimulation of a large series of small events. The result is a transfer of the rapid tectonic dynamics in a creep mode. In this chapter, we discuss possibilities for such a transfer in the framework of simplified models of a subduction zone. The proposed model describes well the basic characteristic features of geo-medium behavior, in particular, statistics of earthquakes (Gutenberg Richter and Omori laws). Its analysis shows that local relatively low-energy impacts can switch block dynamics from stick–slip to creep mode. Thus, it is possible to change the statistics of seismic energy release by means of a series of local, periodic, and relatively low energy impacts. This means a principal possibility of “suppressing” strong earthquakes. Additionally, a modified version of the Burridge-Knopoff model including a simple model for state dependent friction force is derived and studied. The friction model describes a velocity weakening of friction between moving blocks and an increase of static friction during stick periods. It provides a simplified but qualitatively correct stability diagram for the transition from smooth sliding to a stick–slip behavior as observed in various tribological systems. Attractor properties of the model dynamic equations were studied under a broad range of parameters for one- and two-dimensional systems.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 368
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

A novel static friction model for the unlubricated contact of random rough surfaces at micro/nano scale is presented. This model is based on the energy dissipation mechanism that states that changes in the potential of the surfaces in contact lead to friction. Furthermore, it employs the statistical theory of two nominally flat rough surfaces in contact, which assumes that the contact between the equivalent rough peaks and the rigid flat plane satisfies the condition of interfacial friction. Additionally, it proposes a statistical coefficient of positional correlation that represents the contact situation between the equivalent rough surface and the rigid plane. Finally, this model is compared with the static friction model established by Kogut and Etsion (KE model). The results of the proposed model agree well with those of the KE model in the fully elastic contact zone. For the calculation of dry static friction of rough surfaces in contact, previous models have mainly been based on classical contact mechanics; however, this model introduces the potential barrier theory and statistics to address this and provides a new way to calculate unlubricated friction for rough surfaces in contact.


2008 ◽  
Vol 47-50 ◽  
pp. 246-249
Author(s):  
Min Gyu Jang ◽  
Chul Hee Lee ◽  
Seung Bok Choi

In this paper, a stick-slip compensation for the micro-positioning is presented using the statistical rough surface contact model. As for the micro-positioning structure, PZT (lead(Pb) zirconia(Zr) Titanate(Ti)) actuator is used to drive the load for precise positioning with its high resolution incorporating with the PID (Proportional Integral Derivative) control algorithm. Since the stick-slip characteristics for the micro structures are highly nonlinear and complicated, it is necessary to incorporate more detailed stick-slip model for the applications involving the high precision motion control. Thus, the elastic-plastic static friction model is used for the stick-slip compensation considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of the system for the positioning apparatus was derived from the dynamic behaviors of structural parts. Since the conventional piezoelectric actuator generates the short stroke, a bridge-type flexural hinge mechanism is introduced to amplify the linear motion range. Using the proposed smart structure, simulations under the representative positioning motion were conducted to demonstrate the micro-positioning under the stick-slip friction.


Author(s):  
Shangguan Bo ◽  
Yu Feilong ◽  
Duan Jingyao ◽  
Gao Song ◽  
Xiao Junfeng ◽  
...  

To investigate the friction damping effect of a loosely assembled blade with dovetail root, a fractal contact friction model is proposed to describe the friction force. In the proposed model, the friction contact interface is discretized to a series of friction contact pairs and each of them can experience stick, slip, or separate. Fractal geometry is used to simulate the topography of contact surfaces. The contact stiffness, which is related to the parameters of contact interfaces including normal load, roughness, Young’s modulus, and Poisson’s ratio, is calculated using Hertz contact theory and fractal geometry. The nonlinear vibration response of loosely assembled blade with dovetail root is predicted using the proposed model, the multiharmonic balance method and Newton iterative algorithm. The effect of centrifugal force, friction coefficient and exciting force on the forced response of a loosely assembled blade with dovetail root is studied. The numerical vibration responses are compared to the experimental results. It will verify the reliability of the numerical method and provide theoretical basis for structure design of the loosely assembled blade with dovetail root.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
Jun Lou ◽  
Hao Lu ◽  
Yuekai Sun

Friction and system models are fundamentally coupled. In fact, the success of models in predicting experimental results depends highly on the modeling of friction. This is true at the atomic scale where the nanoscale friction depends on a large set of parameters. This paper presents a novel nanoscale friction model based on the bristle interpretation of single asperity contact. This interpretation is adopted after a review of dynamic friction models representing stick-slip motion in macrotribology literature. The proposed model uses state variables and introduces a generalized bristle deflection. Jumping mechanisms are implemented in order to take into account the instantaneous jumps observed during 2D stick-slip phenomena. The model is dynamic and Lipchitz, which makes it suitable for future control implementation. Friction force microscope scans of a muscovite mica sample were conducted in order to determine numerical values of the different model parameters. The simulated and experimental results are then compared in order to show the efficacy of the proposed model.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

A new AFM-based nanomanipulation model describing the relevant physics and dynamics at the nanoscale is presented. The nanomanipulation scheme consists of integrated subsystems that are identified in a modular approach. The model subsystems define the AFM cantilever-sample dynamics, the AFM tip-sample interactions, the contact mechanics and the friction between the sample and the substrate. The coupling between these different subsystems is emphasized. The main contribution of the proposed nanomanipulation model is the use of a new 2D dynamic friction model based on a generalized bristle interpretation of one asperity contact. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations. In fact, the model is shown to describe the 2D stick-slip behavior with the substrate lattice periodicity. The proposed nanomanipulation model facilitates the improvement and extension of each subsystem to further take into account the complex interactions at the nanoscale.


Author(s):  
André Carvalho Bittencourt ◽  
Svante Gunnarsson

Friction is the result of complex interactions between contacting surfaces in down to a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, the typical friction phenomena and models used in robotics are reviewed. It is shown how such models can be represented as a sum of functions of relevant states which are linear and nonlinear in the parameters, and how the identification method described in Ref. [1] can be used to identify them when all states are measured. The discussion follows with a detailed experimental study of friction in a robot joint under changes of joint angle, load torque, and temperature. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, considerably improving the prediction performance compared to a standard model.


Author(s):  
S H Choi ◽  
C O Lee ◽  
H S Cho

A poppet-type electropneumatic servovalve developed in this study utilizes a poppet directly operated by a moving-coil actuator in the metering stage and is controlled by a digital controller. This servovalve is insensitive to air contamination and has no problem of air leakage at null, but it has relatively large friction between the O-rings installed in the peripheral grooves of the balance pistons and the valve sleeve. For friction compensation control, a static friction model that enables simulation of the stick-slip phenomena and a dynamic model that captures the friction behaviour such as presliding displacement and varying break-away force are presented. The parameters for the friction models are identified by utilizing an evolution strategy, one of the evolutionary algorithms, which is a probabilistic global search algorithm based on the model of natural evolution. These friction models are then used in designing a non-linear friction compensation controller. It is found in the experiment that the electropneumatic servovalve has almost no hysteresis and that the friction compensation control significantly improves valve performance. The experimental results of the open loop test on poppet positioning agree well with simulation results of the valve model with identified friction parameters. It is also shown that the experimental results of friction compensation control using a static friction model show a small steady state error but those using a dynamic friction model show almost no such error.


2003 ◽  
Author(s):  
M. A. Hassan ◽  
D. S. Weaver ◽  
M. A. Dokainish

Heat exchanger tubes are usually loosely supported at intermediate points by plates or flat bars. Flow-induced vibrations result in fretting wear tube damage due to impacting and rubbing of tubes against their supports. Prediction of tube response relies on modelling the nonlinear tube/support interaction. The evaluated response is used to predict the resultant wear damage using experimentally measured wear coefficients. An accurate of prediction of impact forces and the work rate is therefore paramount. The analytical models available assume tube/support contact occurs over a single point. In this paper, a computational algorithm is proposed to describe the tube/support impact considering a finite support width. The new model provides a means of representing tube/support contact as a combination of edge and segmental contact. The proposed model utilizes a distributed contact stiffness to describe the segmental contact. The formulation also incorporates a stick/slip friction model. The model developed is utilized to simulate the dynamics of loosely-supported tubes.


Author(s):  
Yanto Mualim ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

A novel approach to better model nanomanipulation of a nanosphere laying on a stage via a pushing scheme is presented. Besides its amenability to nonlinear analysis and simulation, the proposed model is also effective in reproducing experimental behaviors commonly observed during AFM-type nanomanipulation. The proposed nanomanipulation model consists of integrated subsystems that are identified in a modular fashion. The subsystems consistently define the dynamics of the nanomanipulator tip and nanosphere, interaction forces between the tip and the nanosphere, friction between the nanosphere and the stage, and the contact deformation between the nanomanipulator tip and the nanosphere. The main feature of the proposed nanomanipulation model is the Lund-Grenoble (LuGre) dynamic friction model that reliably represents the stick-slip behavior of atomic friction experienced by the nanosphere. The LuGre friction model introduces a new friction state and has desirable mathematical properties making it a well-posed dynamical model that characterizes friction with fidelity. The proposed nanomanipulation model facilitates further improvement and extension of each subsystem to accommodate other physical phenomena that characterize the physics and mechanics of nanomanipulation. Finally, the versatility and effectiveness of the proposed model is simulated and compared to existing models in the literature.


Sign in / Sign up

Export Citation Format

Share Document