Soil Organic Matter and Its Impact on Soil Properties and Nutrient Status

Author(s):  
Owais Bashir ◽  
Tahir Ali ◽  
Zahoor Ahmad Baba ◽  
G. H. Rather ◽  
S. A. Bangroo ◽  
...  
2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


Weed Science ◽  
1983 ◽  
Vol 31 (3) ◽  
pp. 368-372 ◽  
Author(s):  
Josef Kozak ◽  
Jerome B. Weber

Adsorption of five phenylurea herbicides, metobromuron [3-(p-bromophenyl)-1-methoxy-1-methylurea], monolinuron [3-(p-chlorophenyl)-1-methoxyl-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea], chlorbromuron [3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea], and CGA-15646 [3-(3-chloro-4-methylphenyl)-1,1-dimethylurea] by eight selected soils of Czechoslovakia were studied. Constants from Freundlich and Langmuir equations were calculated and correlated with the major soil properties. Freundlich K values ranged from 1.84 to 128, and the Freundlich equation was better fitted to the adsorption isotherms than was the Langmuir equation. Soil organic-matter content was the most important factor influencing the range of adsorption.


Soil Research ◽  
2015 ◽  
Vol 53 (6) ◽  
pp. 605 ◽  
Author(s):  
B. W. Murphy

A review has been undertaken into how soil organic matter (SOM) affects a range of soil properties that are important for the productive capacity of soils. The potential effect of varying the amount of SOM in soil on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also including relevant information from overseas. The soil properties considered included aggregate stability, bulk density, water-holding capacity, soil erodibility, soil colour, soil strength, compaction characteristics, friability, nutrient cycling, cation exchange capacity, soil acidity and buffering capacity, capacity to form ligands and complexes, salinity, and the interaction of SOM with soil biology. Increases in SOM have the capacity to have strong influence only the physical properties of the surface soils, perhaps only the top 10 cm, or the top 20 cm at most. This limits the capacity of SOM to influence soil productivity. Even so, the top 20 cm is a critical zone for the soil. It is where seeds are sown, germinate and emerge. It is where a large proportion of plant materials are added to the soil for decomposition and recycling of nutrients and where rainfall either enters the soil or runs off. Therefore, the potential to improve soil condition in the top 0–20 cm is still critical for plant productivity. The SOM through nutrient cycling such as mineralisation of organic nitrogen to nitrate can have an influence on the soil profile.


2018 ◽  
Vol 64 (No. 2) ◽  
pp. 70-75 ◽  
Author(s):  
Romsonthi Chutipong ◽  
Tawornpruek Saowanuch ◽  
Watana Sumitra

Soil organic matter (SOM) is a major index of soil quality assessment because it is one of the key soil properties controlling nutrient budgets in agricultural production systems. The aim of the in situ near-infrared spectroscopy (NIRS) for SOM prediction in paddy area is evaluation of the potential of SOM and prediction of other soil properties. There are keys for soil fertility and soil quality assessments. A spectral reflectance of 130 soil samples was collected by field spectroradiometer in a region of near-infrared. Spectral reflectance collections were processed by the first derivative transformation with the Savitsky-Golay algorithms. Partial least square regression method was used to develop a calibration model between soil properties and spectral reflectance, which was used for prediction and validation processes. Finally, the results of this study demonstrate that NIRS is an effective method that can be used to predict SOM (R<sup>2</sup> = 0.73, RPD (ratio of performance to deviation) = 1.82) and total nitrogen (R<sup>2</sup> = 0.72, RPD = 1.78). Therefore, NIRS is a potential tool for soil properties predictions. The use of these techniques will facilitate the implementation of soil management with a decreasing cost and time of soil study in a large scale. However, further works are necessary to develop more accurate soil properties prediction and to apply this method to other areas.


Soil Research ◽  
2018 ◽  
Vol 56 (4) ◽  
pp. 396 ◽  
Author(s):  
Thilo Rennert

The presence of geogenic CO2 has been recently identified as a soil-forming factor in soil on mofette sites. Topsoil samples (with a maximum CO2 concentration of 52% at 10 cm depth) were studied along a transect on a mofette site in the NW Czech Republic to further understand the processes within soil and the soil properties induced by CO2 in the soil atmosphere. Geogenic CO2 negatively affected the cation exchange capacity, the ratio of exchangeable Ca and Mg, and the total contents of Al, Mg and Mn. No effect was detected on a chemical index of weathering and the mineralogical composition of the clay fractions, which might be explained by the acidic parent material and the progress of soil development. Diffuse reflectance infrared spectroscopy indicated that the composition of particulate soil organic matter was partially affected by CO2 concentrations: the higher the CO2 concentrations, the smaller the extent of oxidative transformation and the smaller the abundance of carboxyl groups. In the clay fractions, stabilisation of transformed soil organic matter (SOM) was promoted by exchangeable Al. This study quantifies, for the first time, the correlation between geogenic CO2 and several inorganic soil properties and the composition of SOM in physical fractions.


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 199-205 ◽  
Author(s):  
Göl Ceyhun

The objectives of this study were to determine the amounts of soil organic matter (SOM) stored within surface soils of high mountain forests and how the SOM amounts are affected by aridity and altitude in semi-arid regions of Central Anatolia. Various climate and altitude conditions of Central Anatolia were included in this study, and SOM amounts were found to be higher in the surface soils of northern Anatolia forests. Our results showed that altitude, climatic factors, and tree species were the most important factors affecting the amount of SOM and other soil properties. SOM, pH, bulk density and available water content differed significantly depending on the altitude and climatic factors in the study areas. As the altitude increased in semi-arid regions, the aridity decreased and the amount of SOM increased.


2021 ◽  
Author(s):  
Tiia Haberstok ◽  
Evelin Pihlap ◽  
Franziska Bucka ◽  
Tabea Klör ◽  
Thomas Baumgartl ◽  
...  

&lt;p&gt;Rehabilitated soils from post mining fields are considered to have poor soil structure, low nutrient content and microbial activity. Soil development during rehabilitation is a complex biogeochemical process influenced by the inherent properties of the substrate used for the rehabilitation. Besides disturbed soil properties, in Australia soil rehabilitation success is also influenced by climatic conditions like high evaporation rate which affects rebuilding of soil system functions. There are several studies looking into the development of soil properties post rehabilitation in temperate climates, however, the intertwined development of soil structure, quality and quantity of soil organic matter (SOM) after the rehabilitation under water stressed environment is not clear until now.&lt;/p&gt;&lt;p&gt;In this study, we used a space-for-time chronosequence approach in the rehabilitated open-cast mine site at Yallourn (Victoria, Australia) to elucidate the development of soil structure and soil organic matter after rehabilitation. We selected five different fields with increasing rehabilitation ages (2, 3, 10, 21 and 39 years) and two mature soils that are used as grazing land. In each field, we sampled 6 independent locations with stainless steel cylinders (100 cm&lt;sup&gt;3&lt;/sup&gt;) at two depths of 0-4 cm and 10-14 cm. &amp;#160;All samples were analysed for bulk density, organic carbon (OC) and total nitrogen (TN) concentration. Selected samples were wet sieved into four aggregate size classes of &lt;63 &amp;#181;m, 63-200 &amp;#181;m, 200-630 &amp;#181;m and &gt;630 &amp;#181;m. Each aggregate size class was characterized by OC and TN concentration. The chemical composition of the SOM of selected samples was characterized using solid-state &lt;sup&gt;13&lt;/sup&gt;C NMR spectroscopy.&lt;/p&gt;&lt;p&gt;The studied soils have a strong temporal dynamic and variability as determined for the soil properties bulk density and SOM stocks. Aggregate fractionation showed that large macroaggregates (&gt;630 &amp;#181;m) were the most abundant size class fractions in each rehabilitation field, representing 95-75% of the total soil mass. SOM played an important role in the formation of large macroaggregates, where the highest contribution to total OC content was observed. It became evident that plant derived carbon had a decisive role in the structural formation, because O/N-alkyl-C and alkyl-C chemical shift regions represented the highest relative intensities throughout the chronosequence.&lt;/p&gt;


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 827-843 ◽  
Author(s):  
Sunday Adenrele Adeniyi ◽  
Willem Petrus de Clercq ◽  
Adriaan van Niekerk

Abstract. Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1–10, 11–40, and 41–80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Emmanuel Frossard ◽  
Nina Buchmann ◽  
Else K. Bünemann ◽  
Delwende I. Kiba ◽  
François Lompo ◽  
...  

Abstract. Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies have explicitly considered the effects of agricultural management practices on the soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long term. Thus, we analysed the C, N, and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK (bio-Dynamic, bio-Organic, and “Konventionell”) cropping system trial (Switzerland). In each of these trials, there was a large range of C, N, and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P, and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure, and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients, and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N, and P compounds.


Sign in / Sign up

Export Citation Format

Share Document