Temperature and Humidity Compensated Graphene Oxide (GO) Coated Interdigital Sensor for Carbon Dioxide (CO2) Gas Sensing

Author(s):  
Fowzia Akhter ◽  
Saima Hasan ◽  
Md. Eshrat E. Alahi ◽  
S. C. Mukhopadhyay
RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17217-17227 ◽  
Author(s):  
Pritamkumar V. Shinde ◽  
Nanasaheb M. Shinde ◽  
Shoyebmohamad F. Shaikh ◽  
Damin Lee ◽  
Je Moon Yun ◽  
...  

Room-temperature (27 °C) synthesis and carbon dioxide (CO2)-gas-sensing applications of bismuth oxide (Bi2O3) nanosensors obtained via a direct and superfast chemical-bath-deposition method (CBD) with different surface areas and structures.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3813 ◽  
Author(s):  
Piotr Jaworski ◽  
Paweł Kozioł ◽  
Karol Krzempek ◽  
Dakun Wu ◽  
Fei Yu ◽  
...  

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor’s sensitivity.


Author(s):  
Mikin V. Patel ◽  
Steven Zangan

Angiography relies on the use of contrast medium for visualization of the vessel. Iodinated contrast can be contraindicated in patients with renal impairment or iodinated contrast allergy, so carbon dioxide (CO2) gas can be a useful alternative. A number of technical and postural parameters can optimize CO2 angiography, and vasodilators can be used to improve imaging of peripheral vessels. Although CO2 has distinct advantages, the limitations of CO2 angiography must be well understood. Operators should be aware that CO2 angiography can lead to overestimation of vessel size and can lead to complications such as transient ischemia of tissues, alterations of blood chemistry, neurotoxicity, and “vapor lock.”


2020 ◽  
Vol 12 (14) ◽  
pp. 5873
Author(s):  
Nur Fatma Fadilah Yaacob ◽  
Muhamad Razuhanafi Mat Yazid ◽  
Khairul Nizam Abdul Maulud ◽  
Noor Ezlin Ahmad Basri

This paper presents a review of carbon dioxide (CO2) emissions from transportation in an attempt to establish a quick and suboptimal update of the methods used to calculate and analyze CO2 emissions from transportation. Transportation is the largest contributor to air pollution through the release of high amounts of CO2 gas into the atmosphere. The methods for calculating and analyzing the carbon footprint of transportation; which is of critical importance in the management of greenhouse gases that contribute to global warming; are still being developed. However; there are some differences in the definitions and methods used to calculate the carbon footprint of transportation in previous studies. This review focuses on the similarities of the methods used to measure CO2 emissions as well as the analyses used to evaluate the emissions. This paper will also highlight the advantages and limitations of each research work. By doing this; the present study contributes to the selection of appropriate methods for calculating CO2 emissions from transportation and draws attention to environmental issues. It is hoped that the implementation of the most appropriate framework will help to reduce CO2 emissions from transportation


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 787 ◽  
Author(s):  
Enver Çavuşoğlu ◽  
Jean-Loup Rault ◽  
Richard Gates ◽  
Donald C. Lay

The swine industry is often forced to euthanize pigs in the first few weeks of life due to injuries, hernias, or unthriftiness. The majority of pigs are euthanized using carbon dioxide (CO2) gas asphyxiation but concerns as to the humaneness of CO2 are increasing. This study compared the euthanasia of weaned pigs using N2O (N2O; n = 9) or CO2 (n = 9), at 50% and 25% min−1 exchange rate, respectively. In addition, we administered an analgesic prior to euthanasia with CO2 (CO2B) exposure as a third treatment (n = 9) to elucidate behaviors indicative of pain. Pigs in the CO2 and N2O treatments lost posture at similar times (latency of 145.0 ± 17.3 and 162.6 ± 7.0 s respectively, p > 0.10), while the CO2B treatment pigs lost posture the soonest (101.2 ± 4.7 s, p < 0.01). The pigs in the CO2B treatment made more escape attempts than the CO2 or N2O pigs (16.4 ± 4.2, 4.7 ± 1.6, 0.3 ± 0.2, respectively; p < 0.0004). However, pigs in N2O squealed more often than either the CO2 or CO2B pigs (9.0 ± 1.6, 2.8 ± 1.2, 1.3 ± 0.6, respectively, p < 0.001). Given the similar time to loss of posture and shorter time displaying open mouth breathing, N2O may cause less stress to pigs; however, the greater number of squeals performed by these pigs suggests the opposite. It was not apparent that any behavior measured was indicative of pain. In conclusion, N2O applied at a 50% min−1 flow rate can be an alternative to CO2 for pig euthanasia.


2011 ◽  
Vol 135-136 ◽  
pp. 347-352 ◽  
Author(s):  
Chang Bao Wen ◽  
Yong Feng Ju ◽  
Wan Lin Li ◽  
Wen Zheng Sun ◽  
Xin Xu ◽  
...  

Carbon dioxide (CO2) gas sensor using surface acoustic wave (SAW) device based on Zinc oxide (ZnO) was developed and fabricated in this paper. The center frequency of SAW device is 203.528 MHz. The input and two output interdigital transducers (IDT) apodized by Morlet wavelet function can improve the side lobe rejection compared with uniform IDT. The ZnO film sensitive to CO2 gas was fabricated in measurement acoustic track of SAW device. Experiments results confirm that the CO2 gas sensor using SAW device based on ZnO film has good response characteristics to different concentrations CO2 gas. Furthermore, the CO2 gas sensor using SAW device based on ZnO film has good stability and linearity.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012007
Author(s):  
Norhafizah Salleh ◽  
Nur Syahera Jamalulail ◽  
Noor Azlina Abdul Hamid ◽  
Zalipah Jamellodin ◽  
Masni A Majid ◽  
...  

Abstract 3D building printing is a technology for producing 3D models of an object to build any shape or size in layers by using computer software. The development of 3D printing was going to be more famous and commercial in the future to reduce the construction cost and labor demands, sustainability, and to the greenest way. Concrete is the mixture that consists of the ingredients of water, binder (cement) and aggregates (rock, sand, gravel). The productions of Portland cement in construction leads to the emissions of carbon dioxide (CO2) gas into the air. Waste material has been used as cement replacement in this research study to reduce carbon dioxide (CO2) gas emissions. This research study was going to evaluate the viability of concrete for 3D printing and printing emphasizing the impact on potential opportunities of this innovative industry. The behaviour of 3D concrete printing and potential of modified mortar in 3D concrete mix design by using Ground Granulated Blast-Furnace Slag (GGBS) is used to evaluate the potential uses of GGBS in concrete mixture for 3D building printing. This research study involved the review of concrete compressive strength and workability of 3D concrete printing with the control aspect during process manufacturing. The result shows that the mix design of 3D concrete printing with 30% and 40% produced concrete strength of 47.33MPa and 47.67MPa respectively. Furthermore, control aspect requirements of concrete for 3D printing were discussed in the field extrudability, flowability, buildability, strength between layers, aggregates, and water-cement ratio. Throughout this study, the manufactures of 3D building printing materials using environmentally friendly elements can contribute effectively create a sustainable environment automatically.


Sign in / Sign up

Export Citation Format

Share Document