scholarly journals Classification of Neuroblastoma Histopathological Images Using Machine Learning

Author(s):  
Adhish Panta ◽  
Matloob Khushi ◽  
Usman Naseem ◽  
Paul Kennedy ◽  
Daniel Catchpoole
2020 ◽  
Author(s):  
Anil Kumar ◽  
Manish Prateek

Abstract Background: This study aimed significance of Ki-67 labels and calculated the proliferation score based on the counting of immunopositive and immunonegative nuclear sections with the help of machine learning to predict the intensity of breast carcinoma.Methods: BreCaHAD (Breast Cancer Histopathological Annotation and Diagnosis) dataset includes various malignant cases of different patients in their routine diagnosis. It contains H&E stained microscopic histopathological images at 40x magnification and stored in .tiff format using RGB band. In this study, the method start with preprocessing that focuses on resizing, smoothing and enhancement. After preprocessing, it is decomposed RGB sample into HSI values. BreCaHAD data set is hematoxylin and eosin (H&E) stained, where brown and blue color level have a major role to differentiate the immunopositive and immunonegative nuclear sections. Blue color in RGB and Hue in HSI are the intrinsic characteristic of H&E Ki-67. The shape parameters are calculated after segmentation preceded by Otsu thresholding and unsupervised machine learning. Morphological operators help to solve the problem of overlapping of nucleus section in sample images so that the counting will be correct and increase the accuracy of automatic segmentation.Result: With the help of nine morphological features and supported by unsupervised machine learning technique on BreCaHAD dataset, it is predicted the label of breast carcinoma. The performance measures like precision: 95.7%, recall: 93.8%, f-score: 94.74%, accuracy: 0.9088, specificity: 0.6803, BCR: 0.7975 and MCC: 0.5855 are obtained in proposed methodology which is better than existing techniques. Conclusion: This study developed an efficient automated nuclear section segmentation model implemented on BreCaHAD dataset contains H&E stained microscopic biopsy images. Potentially, this model will assist the pathologist for fast, effective, efficient and accurate computation of Ki-67 proliferation score on breast IHC carcinoma images.


2020 ◽  
Vol 10 (9) ◽  
pp. 2252-2258
Author(s):  
Jiatong Wang ◽  
Tiantian Zhu ◽  
Shan Liang ◽  
R. Karthiga ◽  
K. Narasimhan ◽  
...  

Background and Objective: Breast cancer is fairly common and widespread form of cancer among women. Digital mammogram, thermal images of breast and digital histopathological images serve as a major tool for the diagnosis and grading of cancer. In this paper, a novel attempt has been proposed using image analysis and machine learning algorithm to develop an automated system for the diagnosis and grading of cancer. Methods: BreaKHis dataset is employed for the present work where images are available with different magnification factor namely 40×, 100×, 200×, 400× and 200× magnification factor is utilized for the present work. Accurate preprocessing steps and precise segmentation of nuclei in histopathology image is a necessary prerequisite for building an automated system. In this work, 103 images from benign and 103 malignant images are used. Initially color image is reshaped to gray scale format by applying Otsu thresholding, followed by top hat, bottom hat transform in preprocessing stage. The threshold value selected based on Ridler and calvard algorithm, extended minima transform and median filtering is applied for doing further steps in preprocessing. For segmentation of nuclei distance transform and watershed are used. Finally, for feature extraction, two different methods are explored. Result: In binary classification benign and malignant classification is done with the highest accuracy rate of 89.7% using ensemble bagged tree classifier. In case of multiclass classification 5-class are taken which are adenosis, fibro adenoma, tubular adenoma, mucinous carcinoma and papillary carcinoma the combination of multiclass classification gives the accuracy of 88.1% using ensemble subspace discriminant classifier. To the best of author’s knowledge, it is the first made in a novel attempt made for binary and multiclass classification of histopathology images. Conclusion: By using ensemble bagged tree and ensemble subspace discriminant classifiers the proposed method is efficient and outperform the state of art method in the literature.


2020 ◽  
Vol 20 (S14) ◽  
Author(s):  
Sadiq Alinsaif ◽  
Jochen Lang

Abstract Background A various number of imaging modalities are available (e.g., magnetic resonance, x-ray, ultrasound, and biopsy) where each modality can reveal different structural aspects of tissues. However, the analysis of histological slide images that are captured using a biopsy is considered the gold standard to determine whether cancer exists. Furthermore, it can reveal the stage of cancer. Therefore, supervised machine learning can be used to classify histopathological tissues. Several computational techniques have been proposed to study histopathological images with varying levels of success. Often handcrafted techniques based on texture analysis are proposed to classify histopathological tissues which can be used with supervised machine learning. Methods In this paper, we construct a novel feature space to automate the classification of tissues in histology images. Our feature representation is to integrate various features sets into a new texture feature representation. All of our descriptors are computed in the complex Shearlet domain. With complex coefficients, we investigate not only the use of magnitude coefficients, but also study the effectiveness of incorporating the relative phase (RP) coefficients to create the input feature vector. In our study, four texture-based descriptors are extracted from the Shearlet coefficients: co-occurrence texture features, Local Binary Patterns, Local Oriented Statistic Information Booster, and segmentation-based Fractal Texture Analysis. Each set of these attributes captures significant local and global statistics. Therefore, we study them individually, but additionally integrate them to boost the accuracy of classifying the histopathology tissues while being fed to classical classifiers. To tackle the problem of high-dimensionality, our proposed feature space is reduced using principal component analysis. In our study, we use two classifiers to indicate the success of our proposed feature representation: Support Vector Machine (SVM) and Decision Tree Bagger (DTB). Results Our feature representation delivered high performance when used on four public datasets. As such, the best achieved accuracy: multi-class Kather (i.e., 92.56%), BreakHis (i.e., 91.73%), Epistroma (i.e., 98.04%), Warwick-QU (i.e., 96.29%). Conclusions Our proposed method in the Shearlet domain for the classification of histopathological images proved to be effective when it was investigated on four different datasets that exhibit different levels of complexity.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1192
Author(s):  
Mizuho Nishio ◽  
Mari Nishio ◽  
Naoe Jimbo ◽  
Kazuaki Nakane

The purpose of this study was to develop a computer-aided diagnosis (CAD) system for automatic classification of histopathological images of lung tissues. Two datasets (private and public datasets) were obtained and used for developing and validating CAD. The private dataset consists of 94 histopathological images that were obtained for the following five categories: normal, emphysema, atypical adenomatous hyperplasia, lepidic pattern of adenocarcinoma, and invasive adenocarcinoma. The public dataset consists of 15,000 histopathological images that were obtained for the following three categories: lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. These images were automatically classified using machine learning and two types of image feature extraction: conventional texture analysis (TA) and homology-based image processing (HI). Multiscale analysis was used in the image feature extraction, after which automatic classification was performed using the image features and eight machine learning algorithms. The multicategory accuracy of our CAD system was evaluated in the two datasets. In both the public and private datasets, the CAD system with HI was better than that with TA. It was possible to build an accurate CAD system for lung tissues. HI was more useful for the CAD systems than TA.


2019 ◽  
Author(s):  
S. Gitto ◽  
D. Albano ◽  
V. Chianca ◽  
R. Cuocolo ◽  
L. Ugga ◽  
...  

Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


Sign in / Sign up

Export Citation Format

Share Document