scholarly journals Environment, Climate Change and the Green Economy

Author(s):  
Jason Samuel Ogola

AbstractTo identify and evaluate possible impacts of climate change on transportation in Limpopo province, it is necessary to define the scale and scope of the transportation system in the province and determine its sensitivities to climate change. This chapter, therefore locates the environment, climate change and the green economy matters in context. The science of climate change is explored, while the main sources of greenhouse gases are discussed. Additionally, the impacts of climate change in South Africa is outlined. Strategies to reduce greenhouse gas emissions (GHG) in the transport sector are provided.

Author(s):  
John Ogony Odiyo ◽  
Peter Bitta Bikam ◽  
James Chakwizira

AbstractTransition to green economy and transport is crucial to reduce environmental problems such as greenhouse gas emissions and climate change in South Africa. However, the challenges associated with the transition present opportunities for innovation and mitigation within the green economy and transport sector. Green economy and transport sector initiatives have the potential to address economic and environmental challenges and open new sources of growth.


Earth ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 731-745
Author(s):  
Madan B. Regmi

Asia is one of the continents that is the most affected by the impacts of climate change. Asian countries need to take climate actions and mitigate emissions from the urban passenger transport sector. Despite some progress in improving urban mobility in Asian cities, greenhouse gas emissions from the transport sector continue to rise. Policy makers who are responsible for managing mobilities must play a major role in decarbonizing the transport sector. In this context, this paper reviews the efforts of selected Asian countries and cities towards reducing greenhouse gas emissions from the urban transport sector. It will analyze their pledges in the Nationally Determined Contributions submitted to the United Nations Framework Convention on Climate Change and will review their relevant transport sector strategies, policies, and practices. It will also look at trends in transport sector emissions and air pollution in different cities, including the short-term impacts of COVID-19. Lastly, it reviews governance issues and the roles that institutions should play to implement polices to decarbonize transport. Based on this analysis, this paper offers policy suggestions to accelerate actions, enhance cross-sectoral coordination, and move towards carbon neutrality in the transport sector in Asia.


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2012 ◽  
Vol 63 (3) ◽  
pp. 269 ◽  
Author(s):  
J. A. Baldock ◽  
I. Wheeler ◽  
N. McKenzie ◽  
A. McBrateny

Organic carbon and nitrogen found in soils are subject to a range of biological processes capable of generating or consuming greenhouse gases (CO2, N2O and CH4). In response to the strong impact that agricultural management can have on the amount of organic carbon and nitrogen stored in soil and their rates of biological cycling, soils have the potential to reduce or enhance concentrations of greenhouse gases in the atmosphere. Concern also exists over the potential positive feedback that a changing climate may have on rates of greenhouse gas emission from soil. Climate projections for most of the agricultural regions of Australia suggest a warmer and drier future with greater extremes relative to current climate. Since emissions of greenhouse gases from soil derive from biological processes that are sensitive to soil temperature and water content, climate change may impact significantly on future emissions. In this paper, the potential effects of climate change and options for adaptation and mitigations will be considered, followed by an assessment of future research requirements. The paper concludes by suggesting that the diversity of climate, soil types, and agricultural practices in place across Australia will make it difficult to define generic scenarios for greenhouse gas emissions. Development of a robust modelling capability will be required to construct regional and national emission assessments and to define the potential outcomes of on-farm management decisions and policy decisions. This model development will require comprehensive field datasets to calibrate the models and validate model outputs. Additionally, improved spatial layers of model input variables collected on a regular basis will be required to optimise accounting at regional to national scales.


Author(s):  
Oliver Lah

There is a large potential for cost-effective solutions to reduce greenhouse gas emissions and to improve the sustainability of the transport sector that is yet unexploited, in particular in the urban context. Considering the cost-effectiveness and the potential for co-benefits, it is hard to understand why energy gains and mitigation action in the transport sector is still lagging behind the potential. Particularly interesting is the fact that there is substantial difference among countries with relatively similar economic performances, such as the OECD countries in the development of their transport CO2 emission over the past thirty years despite the fact that these countries had relatively similar access to efficient technologies and vehicles. This study aims to apply some well established political science theories on the particular example of climate change mitigation in the transport sector in order to identify some of the factors that could help explain the variations in success of policies and strategies in this sector. The analysis suggests that institutional arrangements that contribute to consensus building in the political process provide a high level of political and policy stability which is vital to long-term changes in energy end-use sectors that rely on long-term investments. However, there is no direct correlation between institutional structures, e.g. corporatism and success in reducing greenhouse gas emissions in the transport sector. Environmental objectives need to be built into the consensus-based policy structure before actual policy progress can be observed. This usually takes longer in consensus democracies than in politically more agile majoritarian policy environments, but the policy stability that builds on corporatist institutional structures is likely to experience changes over a longer-term, in this case to a shift towards low-carbon transport that endures.


2018 ◽  
Author(s):  
Angel D. Ramirez ◽  
Danilo Arcentales ◽  
Andrea Boero

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions. The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions. In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods. Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.


Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Greenhouse gas (GHG) emission and its associated effects have been a debate in literature for many years (Hoffman, 2011:5; Williams & Schaefer, 2012:175; Whitmarsh, 2011:690). According to Jackson (2016), climate change is seen as a yearly change within the earth's climate that is a result of changes in its atmosphere, as well as interactions between the atmosphere and other chemical, geologic, geographic and biological factors within the earth's system. Climate change has primarily caused a warming effect of the earth's atmosphere that has affected all aspects of life (Pachauri & Reisinger, 2007:7). While there are limited studies that measure greenhouse gas emissions arising from the entire global food chain, there have been estimates of GHG emissions attributable to global agricultural production (Garnett, 2011:23). Energy consumption is one of the biggest challenges food retailers are facing as it not only increases overhead costs but also GHG emission (Tassou, Hadawey & Marriott, 2011). Garnett (2011) alleges that the food chain produces greenhouse gas (GHG) emissions at all stages in its life cycle, from the farming process and its inputs, through to manufacture, distribution, refrigeration, retailing, food preparation in the home and waste disposal. Technological improvements, while essential, will not be sufficient in reducing GHG emissions. The combination of population growth and rising per capita anticipated consumption of meat and dairy products will undermine the cuts that technological and managerial innovation can achieve. Over the last few years food retailers in South Africa started to focus their attention towards GHG emissions, but there is still no framework for food retailers to reduce GHG emissions in South Africa (Tassou et al. 2007:2988). Various studies have argued that the food and drink, transportation, and construction industry sectors are regarded as the most significant contributors to GHG emissions (European Commission, 2006; SEI, WWF & CURE, 2006 and UNEP, 2008). Significant changes in food production and increases in food transport have resulted. The production of food on farms has become increasingly mechanised, large-scale, and specialised; and food supply chains have become more complicated and transport-intensive (Roelich, 2008). Food retailers are contributing to GHG emissions by means of electricity usage through refrigerator equipment, lighting, heating, air conditioning, baking and other secondary services. There is no general strategy for food retailers to reduce GHG emission and minimal research has been done in this sector (Tassou et al, 2011). Keywords: climate change; food retailers; greenhouse gas emission; perceptions; strategies


2011 ◽  
Vol 1 (2) ◽  
pp. 46 ◽  
Author(s):  
Kofo A Aderogba

Abstract The enhancement of the greenhouse effect in driving increases in temperature and many other changes associated with climate have become great concern to research. The objective of this paper is to estimate the amount of greenhouse gases in the atmosphere in Lagos Metropolis. Literatures on road and air travels were read; and also journal articles on pollution and greenhouse gases, global warming and climate change. Newspaper cuttings, magazines, and electronic media sources of data and information were used. Trends in the growth and development of railway locomotives, marine activities, vehicular movements and air travels in the metropolis were studied and correlated with the estimated greenhouse gases emitted. There is positive correlation. Vehicular movements and air travels have increased by over 50% in the last twenty years. Greenhouse gases are increasing by the day. There must be deliberate checks on gas emission from automobiles, plants and machineries and in the aviation industry.  The world is not at rest to arrest the effects of climate change and global warming.  Nigeria and Nigerians and particularly Lagosian, the government and research institutions should be parts of the efforts.   Key words: Greenhouse Gas, Emissions, Predicaments, Economic Value, Lagos Metropolis.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexandra M. Collins ◽  
Neal R. Haddaway ◽  
Biljana Macura ◽  
James Thomas ◽  
Nicola Randall ◽  
...  

Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.


Sign in / Sign up

Export Citation Format

Share Document